Full Text:   <5447>

Summary:  <1570>

CLC number: U216.3

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2020-06-19

Cited: 0

Clicked: 5918

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jian-li Cong

https://orcid.org/0000-0001-8909-7715

Yuan Wang

https://orcid.org/0000-0001-5952-1298

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.8 P.1226-1238

http://doi.org/10.1631/FITEE.1900242


Subway rail transit monitoring by built-in sensor platform of smartphone


Author(s):  Jian-li Cong, Ming-yuan Gao, Yuan Wang, Rong Chen, Ping Wang

Affiliation(s):  School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China; more

Corresponding email(s):   jlcong2019@my.swjtu.edu.cn, gaomingyuan@swu.edu.cn, wangy39@sustech.edu.cn, chenrong@home.swjtu.edu.cn, wping@home.swjtu.edu.cn

Key Words:  Acceleration signals, Smart monitoring, Embedded sensors, Smartphones, Subway


Jian-li Cong, Ming-yuan Gao, Yuan Wang, Rong Chen, Ping Wang. Subway rail transit monitoring by built-in sensor platform of smartphone[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(8): 1226-1238.

@article{title="Subway rail transit monitoring by built-in sensor platform of smartphone",
author="Jian-li Cong, Ming-yuan Gao, Yuan Wang, Rong Chen, Ping Wang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="8",
pages="1226-1238",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900242"
}

%0 Journal Article
%T Subway rail transit monitoring by built-in sensor platform of smartphone
%A Jian-li Cong
%A Ming-yuan Gao
%A Yuan Wang
%A Rong Chen
%A Ping Wang
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 8
%P 1226-1238
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900242

TY - JOUR
T1 - Subway rail transit monitoring by built-in sensor platform of smartphone
A1 - Jian-li Cong
A1 - Ming-yuan Gao
A1 - Yuan Wang
A1 - Rong Chen
A1 - Ping Wang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 8
SP - 1226
EP - 1238
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900242


Abstract: 
Smartphone, as a smart device with multiple built-in sensors, can be used for collecting information (e.g., vibration and location). In this paper, we propose an approach for using the smartphone as a sensing platform to obtain real-time data on vehicle acceleration, velocity, and location through the development of the corresponding application software and thereby achieve the green concept based monitoring of the track condition during subway rail transit. Field tests are conducted to verify the accuracy of smartphones in terms of the obtained data’s standard deviation (SD), Sperling index (SI), and International Organization for Standardization (ISO)-2631 weighted acceleration index (WAI). A vehicle-positioning method, together with the coordinate alignment algorithm for a Global Positioning System (GPS) free tunnel environment, is proposed. Using the time-domain integration method, the relationship between the longitudinal acceleration of a vehicle and the subway location is established, and the distance between adjacent stations of the subway is calculated and compared with the actual values. The effectiveness of the method is verified, and it is confirmed that this approach can be used in the GPS-free subway tunnel environment. It is also found that using the proposed vehicle-positioning method, the integral error of displacement of a single subway section can be controlled to within 5%. This study can make full use of smartphones and offer a smart and eco-friendly approach for human life in the field of intelligent transportation systems.

基于智能手机内置传感器的地铁轨道状态监测

从建力1,2,高鸣源3,4,王源5,陈嵘1,2,王平1,2
1西南交通大学土木工程学院,中国成都市,610031
2高速铁路线路工程教育部重点实验室,中国成都市,610031
3西南大学工程技术学院,中国重庆市,400716
4智能传动和控制工程实验室,中国重庆市,400716
5南方科技大学系统设计与智能制造学院,中国深圳市,518055

摘要:智能手机内置多种传感器,可作为一种智能传感设备收集信息(如振动与位置)。本文提出一种方法,以智能手机为传感平台,通过开发相应的应用软件实时获取车辆加速度、速度和位置信息,从而实现基于绿色理念的地铁轨道状态监测。通过智能手机和高精度传感器现场试验,根据检测数据的标准差、Sperling指标和ISO-2631计权加速度验证其准确性。结合无全球定位系统覆盖的隧道环境坐标校准算法,提出一种车辆定位方法。基于时域积分法,建立车辆纵向加速度与车辆运行区间里程位置的关系,计算相邻车站间的距离并与实际值比较。验证了所提方法有效性,且证实该方法可用于无全球定位系统覆盖的隧道环境。结果表明,站间距范围内车辆位置误差可控制在5%以内。该研究充分利用智能手机,为智能轨道交通领域人类生活提供一种智能且环保的方法。

关键词:加速度数据;智能监测;内置传感器;智能手机;地铁

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Agapie E, Chen J, Houston D, et al., 2008. Seeing our signals: combining location traces and web-based models for personal discovery. Proc 9th Workshop on Mobile Computing Systems and Applications, p.6-10.

[2]Chellaswamy C, Balaji L, Vanathi A, et al., 2017. IoT based rail track health monitoring and information system. Int Conf on Microelectronic Devices, Circuits and Systems, p.1-6.

[3]Cong JL, Wang Y, Yang CP, et al., 2019. Data preprocessing method of vehicle vibration acceleration by smartphone. J Data Acquis Proc, 34(2):349-357 (in Chinese).

[4]Gao MY, Wang P, Cao Y, et al., 2017. Design and verification of a rail-borne energy harvester for powering wireless sensor networks in the railway industry. IEEE Trans Intell Transp Syst, 18(6):1596-1609.

[5]Gao MY, Wang P, Wang YF, et al., 2018. Self-powered ZigBee wireless sensor nodes for railway condition monitoring. IEEE Trans Intell Transp Syst, 19(3):900-909.

[6]Gao MY, Su CG, Cong JL, et al., 2019. Harvesting thermo-electric energy from railway track. Energy, 180:315-329.

[7]Gao MY, Cong JL, Xiao JL, et al., 2020. Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport. Appl Energy, 257:113969.

[8]Griffin MJ, 2007. Discomfort from feeling vehicle vibration. Veh Syst Dynam, 45(7-8):679-698.

[9]Huang DM, Zhou SX, Yang ZC, 2019. Resonance mechanism of nonlinear vibrational multistable energy harvesters under narrow-band stochastic parametric excitations. Complexity, 2019:1050143.

[10]Huang DM, Zhou SX, Han Q, et al., 2020. Response analysis of the nonlinear vibration energy harvester with an uncertain parameter. Proc Inst Mech Eng K, 234(2):393-407.

[11]International Organization for Standardization, 1997. Mechanical vibration and shock: evaluation of human exposure to whole-body vibration. Part 1, general requirements. ISO 2631-1:1997. International Organization for Standardization.

[12]Jin XS, Wen ZF, Wang KY, et al., 2006. Three-dimensional train–track model for study of rail corrugation. J Sound Vibr, 293(3-5):830-855.

[13]Kaynia AM, Park J, Norén-Cosgriff K, 2017. Effect of track defects on vibration from high speed train. Proc Eng, 199:2681-2686.

[14]Kim YG, Kwon HB, Kim SW, et al., 2003. Correlation of ride comfort evaluation methods for railway vehicles. Proc Inst Mech Eng F, 217(2):73-88.

[15]Lane ND, Miluzzo E, Lu H, et al., 2010. A survey of mobile phone sensing. IEEE Commun Mag, 48(9):140-150.

[16]Mohan P, Padmanabhan VN, Ramjee R, 2008. Nericell: rich monitoring of road and traffic conditions using mobile smartphones. Proc 6th ACM Conf on Embedded Network Sensor Systems, p.323-336.

[17]Molodova M, Li ZL, Núñez A, et al., 2014. Automatic detection of squats in railway infrastructure. IEEE Trans Intell Transp Syst, 15(5):1980-1990.

[18]Mosa ASM, Yoo I, Sheets L, 2012. A systematic review of healthcare applications for smartphones. BMC Med Inform Dec Mak, 12(1):67.

[19]Paddan GS, Griffin MJ, 2002. Evaluation of whole-body vibration in vehicles. J Sound Vibr, 253(1):195-213.

[20]Reddy S, Burke J, Estrin D, et al., 2008. Determining transportation mode on mobile phones. 12th IEEE Int Symp on Wearable Computers, p.25-28.

[21]Ruiz-Zafra A, Orantes-González E, Noguera M, et al., 2015. A comparative study on the suitability of smartphones and IMU for mobile, unsupervised energy expenditure calculi. Sensors, 15(8):18270-18286.

[22]Simonyi E, Fazekas Z, Gáspár P, 2014. Smartphone application for assessing various aspects of urban public transport. Transp Res Proc, 3:185-194.

[23]Tsunashima H, Naganuma Y, Kobayashi T, 2014. Track geometry estimation from car-body vibration. Veh Syst Dynam, 52(S1):207-219.

[24]Wang P, Wang Y, Wang L, et al., 2017. Measurement of carbody vibration in urban rail transit using smartphones. Proc Transportation Research Board 96th Annual Meeting, p.15.

[25]Wang SQ, Chen CF, Ma J, 2010. Accelerometer based transportation mode recognition on mobile phones. Asia- Pacific Conf on Wearable Computing Systems, p.44-46.

[26]Wang Y, Wang P, Wang X, et al., 2018. Position synchronization for track geometry inspection data via big-data fusion and incremental learning. Transp Res Part C Emerg Technol, 93:544-565.

[27]Wang YF, Yang Z, Pang J, 2018. Statistical analysis of urban rail transit lines in 2017 China―express delivery of annual report on urban rail transit V. Urban Mass Trans, 21(1):1-6 (in Chinese).

[28]Wei XK, Jia LM, Liu H, 2013. A comparative study on fault detection methods of rail vehicle suspension systems based on acceleration measurements. Veh Syst Dynam, 51(5):700-720.

[29]Yang K, Wang JL, Yurchenko D, 2019. A double-beam piezo- magneto-elastic wind energy harvester for improving the galloping-based energy harvesting. Appl Phys Lett, 115(19):193901.

[30]Zhao YJ, Deng X, Liu SQ, et al., 2015. Interior noise prediction of high-speed train based on hybrid FE-SEA method. Proc 11th Int Workshop on Railway Noise, p.699-705.

[31]Zhou SX, Zuo L, 2018. Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun Nonl Sci Numer Simul, 61:271-284.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE