CLC number: TN928
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-03-03
Cited: 0
Clicked: 5731
Citations: Bibtex RefMan EndNote GB/T7714
Jie Yang, Jing Xu, Xiao Li, Shi Jin, Bo Gao. Integrated communication and localization in millimeter-wave systems[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 457-470.
@article{title="Integrated communication and localization in millimeter-wave systems",
author="Jie Yang, Jing Xu, Xiao Li, Shi Jin, Bo Gao",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="4",
pages="457-470",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000505"
}
%0 Journal Article
%T Integrated communication and localization in millimeter-wave systems
%A Jie Yang
%A Jing Xu
%A Xiao Li
%A Shi Jin
%A Bo Gao
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 4
%P 457-470
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000505
TY - JOUR
T1 - Integrated communication and localization in millimeter-wave systems
A1 - Jie Yang
A1 - Jing Xu
A1 - Xiao Li
A1 - Shi Jin
A1 - Bo Gao
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 4
SP - 457
EP - 470
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000505
Abstract: As the fifth-generation (5G) mobile communication system is being commercialized, extensive studies on the evolution of 5G and sixth-generation (6G) mobile communication systems have been conducted. Future mobile communication systems are evidently evolving toward a more intelligent and software-reconfigurable functionality paradigm that can provide ubiquitous communication, as well as sense, control, and optimize wireless environments. Thus, integrating communication and localization using the highly directional transmission characteristics of millimeter waves (mmWaves) is a promising route. This approach not only expands the localization capabilities of a communication system but also provides new concepts and opportunities to enhance communication. In this paper, we explain the integrated communication and localization in mmWave systems, in which these processes share the same set of hardware architecture and algorithms. We also provide an overview of the key enabling technologies and the basic knowledge on localization. Then, we provide two promising directions for studies on localization with an extremely large antenna array and model-based (or model-driven) neural networks. We also discuss a comprehensive guidance for location-assisted mmWave communications in terms of channel estimation, channel state information feedback, beam tracking, synchronization, interference control, resource allocation, and user selection. Finally, we outline the future trends on the mutual assistance and enhancement of communication and localization in integrated systems.
[1]Abu-Shaban Z, Zhou XY, Abhayapala T, et al., 2018. Error bounds for uplink and downlink 3D localization in 5G millimeter wave systems. IEEE Trans Wirel Commun, 17(8):4939-4954.
[2]Akdeniz MR, Liu YP, Samimi MK, et al., 2014. Millimeter wave channel modeling and cellular capacity evaluation. IEEE J Sel Areas Commun, 32(6):1164-1179.
[3]Akyildiz IF, Han C, Nie S, 2018. Combating the distance problem in the millimeter wave and terahertz frequency bands. IEEE Commun Mag, 56(6):102-108.
[4]Ali A, Gonzalez-Prelcic N, Heath RW, et al., 2020. Leveraging sensing at the infrastructure for mmWave communication. IEEE Commun Mag, 58(7):84-89.
[5]Amiri A, Angjelichinoski M, de Carvalho E, et al., 2018. Extremely large aperture massive MIMO: low complexity receiver architectures. IEEE Globecom Workshops, p.1-6.
[6]Amiri R, Behnia F, Zamani H, 2017a. Asymptotically efficient target localization from bistatic range measurements in distributed MIMO radars. IEEE Signal Process Lett, 24(3):299-303.
[7]Amiri R, Behnia F, Zamani H, 2017b. Efficient 3-D positioning using time-delay and AOA measurements in MIMO radar systems. IEEE Commun Lett, 21(12):2614-2617.
[8]Andrews JG, Buzzi S, Choi W, et al., 2014. What will 5G be? IEEE J Sel Areas Commun, 32(6):1065-1082.
[9]Badiu MA, Hansen TL, Fleury BH, 2017. Variational Bayesian inference of line spectra. IEEE Trans Signal Process, 65(9):2247-2261.
[10]Bi Q, 2019. Ten trends in the cellular industry and an outlook on 6G. IEEE Commun Mag, 57(12):31-36.
[11]Boccardi F, Heath RW, Lozano A, et al., 2014. Five disruptive technology directions for 5G. IEEE Commun Mag, 52(2):74-80.
[12]Bölcskei H, Gesbert D, Papadias CB, et al., 2006. Space-Time Wireless Systems: from Array Processing to MIMO Communications. Cambridge University Press, Cambridge.
[13]Brady J, Behdad N, Sayeed AM, 2013. Beamspace MIMO for millimeter-wave communications: system architecture, modeling, analysis, and measurements. IEEE Trans Antenn Propag, 61(7):3814-3827.
[14]Dardari D, Guidi F, 2018. Direct position estimation from wavefront curvature with single antenna array. Proc 8th Int Conf on Localization and GNSS, p.1-5.
[15]Dardari D, Conti A, Ferner U, et al., 2009. Ranging with ultrawide bandwidth signals in multipath environments. Proc IEEE, 97(2):404-426.
[16]Decurninge A, Ordóñez LG, Ferrand P, et al., 2018. CSI-based outdoor localization for massive MIMO: experiments with a learning approach. Proc 15th Int Symp on Wireless Communication Systems, p.1-6.
[17]del Peral-Rosado JA, Raulefs R, López-Salcedo JA, et al., 2018. Survey of cellular mobile radio localization methods: from 1G to 5G. IEEE Commun Surv Tutor, 20(2):1124-1148.
[18]di Taranto R, Muppirisetty S, Raulefs R, et al., 2014. Location-aware communications for 5G networks: how location information can improve scalability, latency, and robustness of 5G. IEEE Signal Process Mag, 31(6):102-112.
[19]Einemo M, So HC, 2015. Weighted least squares algorithm for target localization in distributed MIMO radar. Signal Process, 115:144-150.
[20]Ferrand P, Decurninge A, Guillaud M, 2020. DNN-based localization from channel estimates: feature design and experimental results. https://arxiv.org/abs/2004.00363
[21]Friedlander B, 2019. Localization of signals in the near-field of an antenna array. IEEE Trans Signal Process, 67(15):3885-3893.
[22]Garcia N, Wymeersch H, Ström EG, et al., 2016. Location-aided mm-wave channel estimation for vehicular communication. Proc IEEE 17th Int Workshop on Signal Processing Advances in Wireless Communications, p.1-5.
[23]Garcia N, Wymeersch H, Larsson EG, et al., 2017. Direct localization for massive MIMO. IEEE Trans Signal Process, 65(10):2475-2487.
[24]Ge XH, Tu S, Mao GQ, et al., 2016. 5G ultra-dense cellular networks. IEEE Wirel Commun, 23(1):72-79.
[25]Guo XS, Ansari N, Li L, et al., 2018. Indoor localization by fusing a group of fingerprints based on random forests. IEEE Int Things J, 5(6):4686-4698.
[26]Han Y, Hsu TH, Wen CK, et al., 2019a. Efficient downlink channel reconstruction for FDD multi-antenna systems. IEEE Trans Wirel Commun, 18(6):3161-3176.
[27]Han Y, Tang WK, Jin S, et al., 2019b. Large intelligent surface-assisted wireless communication exploiting statistical CSI. IEEE Trans Veh Technol, 68(8):8238-8242.
[28]Han Y, Jin S, Wen CK, et al., 2020. Channel estimation for extremely large-scale massive MIMO systems. IEEE Wirel Commun Lett, 9(5):633-637.
[29]Han YJ, Shen Y, Zhang XP, et al., 2016. Performance limits and geometric properties of array localization. IEEE Trans Inform Theory, 62(2):1054-1075.
[30]He HT, Jin S, Wen CK, et al., 2019. Model-driven deep learning for physical layer communications. IEEE Wirel Commun, 26(5):77-83.
[31]He JG, Wymeersch H, Sanguanpuak T, et al., 2020. Adaptive beamforming design for mmWave RIS-aided joint localization and communication. IEEE Wireless Communications and Networking Conf Workshops, p.1-6.
[32]Heath RW, González-Prelcic N, Rangan S, et al., 2016. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 10(3):436-453.
[33]Ho KC, Xu WW, 2004. An accurate algebraic solution for moving source location using TDOA and FDOA measurements. IEEE Trans Signal Process, 52(9):2453-2463.
[34]Hu S, Rusek F, Edfors O, 2018. Beyond massive MIMO: the potential of positioning with large intelligent surfaces. IEEE Trans Signal Process, 66(7):1761-1774.
[35]Jeong S, Simeone O, Haimovich A, et al., 2016. Positioning via direct localisation in C-RAN systems. IET Commun, 10(16):2238-2244.
[36]Kodippili NS, Dias D, 2010. Integration of fingerprinting and trilateration techniques for improved indoor localization. Proc 7th Int Conf on Wireless and Optical Communications Networks, p.1-6.
[37]Kraus JD, Marhefka RJ, 2002. Antennas for All Applications (3rd Ed.). McGraw Hill, Upper Saddle River, NJ, USA.
[38]Latva-Aho M, Leppänen K, 2019. Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence. Oulun yliopisto, Finland.
[39]LeCun Y, Bengio Y, Hinton G, 2015. Deep learning. Nature, 521(7553):436-444.
[40]Lemic F, Martin J, Yarp C, et al., 2016. Localization as a feature of mmWave communication. Proc Int Wireless Communications and Mobile Computing Conf, p.1033-1038.
[41]Li Y, He Z, Gao ZZ, et al., 2019. Toward robust crowdsourcing-based localization: a fingerprinting accuracy indicator enhanced wireless/magnetic/inertial integration approach. IEEE Int Things J, 6(2):3585-3600.
[42]Li Y, Zhuang Y, Hu X, et al., 2020. Location-enabled IoT (LE-IoT): a survey of positioning techniques, error sources, and mitigation. https://arxiv.org/abs/2004.03738
[43]Liu W, Cheng QQ, Deng ZL, et al., 2019. Survey on CSI-based indoor positioning systems and recent advances. Proc Int Conf on Indoor Positioning and Indoor Navigation, p.1-8.
[44]Ma YS, Zhou G, Wang SQ, 2019. WiFi sensing with channel state information: a survey. ACM Comput Surv, 52(3):46.
[45]Mamandipoor B, Ramasamy D, Madhow U, 2016. Newtonized orthogonal matching pursuit: frequency estimation over the continuum. IEEE Trans Signal Process, 64(19):5066-5081.
[46]Maschietti F, Gesbert D, de Kerret P, et al., 2017. Robust location-aided beam alignment in millimeter wave massive MIMO. IEEE Global Communications Conf, p.1-6.
[47]Matz G, Hlawatsch F, 2011. Fundamentals of time-varying communication channels. In: Hlawatsch F, Matz G (Eds.), Wireless Communications over Rapidly Time-Varying Channels. Academic Press, Orlando, FL, USA, p.1-63.
[48]Mendrzik R, Meyer F, Bauch G, et al., 2019. Enabling situational awareness in millimeter wave massive MIMO systems. IEEE J Sel Top Signal Process, 13(5):1196-1211.
[49]Molisch AF, 2005. Wireless Communications. Wiley, Chichester, UK.
[50]Muppirisetty LS, Charalambous T, Karout J, et al., 2018. Location-aided pilot contamination avoidance for massive MIMO systems. IEEE Trans Wirel Commun, 17(4):2662-2674.
[51]Niu JW, Wang BW, Shu L, et al., 2015. ZIL: an energy-efficient indoor localization system using ZigBee radio to detect WiFi fingerprints. IEEE J Sel Areas Commun, 33(7):1431-1442.
[52]Rappaport TS, Xing YC, Kanhere O, et al., 2019. Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access, 7:78729-78757.
[53]Rezaie S, Manchón CN, de Carvalho E, 2020. Location- and orientation-aided millimeter wave beam selection using deep learning. Proc IEEE Int Conf on Communications, p.1-6.
[54]Rizk H, Torki M, Youssef M, 2019. CellinDeep: robust and accurate cellular-based indoor localization via deep learning. IEEE Sens J, 19(6):2305-2312.
[55]Sallouha H, Chiumento A, Pollin S, 2017. Localization in long-range ultra narrow band IoT networks using RSSI. Proc IEEE Int Conf on Communications, p.1-6.
[56]Shahmansoori A, Garcia GE, Destino G, et al., 2018. Position and orientation estimation through millimeter-wave MIMO in 5G systems. IEEE Trans Wirel Commun, 17(3):1822-1835.
[57]Studer C, Medjkouh S, Gonultacs E, et al., 2018. Channel charting: locating users within the radio environment using channel state information. IEEE Access, 6:47682-47698.
[58]Tang WK, Chen MZ, Chen XY, et al., 2021. Wireless communications with reconfigurable intelligent surface: path loss modeling and experimental measurement. IEEE Trans Wirel Commun, 20(1):421-439.
[59]van der Perre L, Liu L, Larsson EG, 2018. Efficient DSP and circuit architectures for massive MIMO: state of the art and future directions. IEEE Trans Signal Process, 66(18):4717-4736.
[60]Wang HQ, Kosasih A, Wen CK, et al., 2020. Expectation propagation detector for extra-large scale massive MIMO. IEEE Trans Wirel Commun, 19(3):2036-2051.
[61]Wang TQ, Wen CK, Wang HQ, et al., 2017. Deep learning for wireless physical layer: opportunities and challenges. China Commun, 14(11):92-111.
[62]Wang XY, Gao LJ, Mao SW, et al., 2015. DeepFi: deep learning for indoor fingerprinting using channel state information. Proc IEEE Wireless Communications and Networking Conf, p.1666-1671.
[63]Wang Y, Ho KC, 2015. An asymptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network. IEEE Trans Wirel Commun, 14(12):6524-6535.
[64]Wen FX, Wymeersch H, Peng BL, et al., 2019. A survey on 5G massive MIMO localization. Digit Signal Process, 94:21-28.
[65]Wu QQ, Zhang R, 2020. Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network. IEEE Commun Mag, 58(1):106-112.
[66]Wymeersch H, 2020. A Fisher information analysis of joint localization and synchronization in near field. IEEE Int Conf on Communications Workshops, p.1-6.
[67]Wymeersch H, Seco-Granados G, Destino G, et al., 2017. 5G mmWave positioning for vehicular networks. IEEE Wirel Commun, 24(6):80-86.
[68]Xiao M, Mumtaz S, Huang YM, et al., 2017. Millimeter wave communications for future mobile networks. IEEE J Sel Areas Commun, 35(9):1909-1935.
[69]Xiao ZQ, Zeng Y, 2020. An overview on integrated localization and communication towards 6G. https://arxiv.org/abs/2006.01535v1
[70]Xu ZB, Sun J, 2018. Model-driven deep-learning. Natl Sci Rev, 5(1):22-24.
[71]Yang J, Wen CK, Jin S, et al., 2018. Beamspace channel estimation in mmWave systems via cosparse image reconstruction technique. IEEE Trans Commun, 66(10):4767-4782.
[72]Yang J, Jin S, Wen CK, et al., 2019. 3-D positioning and environment mapping for mmWave communication systems. https://arxiv.org/abs/1908.04142v1
[73]Yang J, Jin S, Wen CK, et al., 2020. Fast beam training architecture for hybrid mmWave transceivers. IEEE Trans Veh Technol, 69(3):2700-2715.
[74]Yang J, Zeng Y, Jin S, et al., 2021. Communication and localization with extremely large lens antenna array. IEEE Trans Wirel Commun, in press.
[75]Yang X, Matthaiou M, Yang J, et al., 2019. Hardware-constrained millimeter-wave systems for 5G: challenges, opportunities, and solutions. IEEE Commun Mag, 57(1):44-50.
[76]Yin XF, Wang S, Zhang N, et al., 2017. Scatterer localization using large-scale antenna arrays based on a spherical wave-front parametric model. IEEE Trans Wirel Commun, 16(10):6543-6556.
[77]Zekavat R, Buehrer RM, 2011. Handbook of Position Location: Theory, Practice, and Advances. John Wiley and Sons, Hoboken, NJ, USA.
[78]Zeng Y, Zhang R, 2016. Millimeter wave MIMO with lens antenna array: a new path division multiplexing paradigm. IEEE Trans Commun, 64(4):1557-1571.
[79]Zhao HY, Zhang N, Shen Y, 2020. Beamspace direct localization for large-scale antenna array systems. IEEE Trans Signal Process, 68:3529-3544.
[80]Zhou BP, Liu A, Lau V, 2019. Successive localization and beamforming in 5G mmWave MIMO communication systems. IEEE Trans Signal Process, 67(6):1620-1635.
[81]Zhou Z, Gao X, Fang J, et al., 2015. Spherical wave channel and analysis for large linear array in LoS conditions. IEEE Globecom Workshops, p.1-6.
Open peer comments: Debate/Discuss/Question/Opinion
<1>