CLC number: TN92; TN43
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-02-24
Cited: 0
Clicked: 6200
Citations: Bibtex RefMan EndNote GB/T7714
Hongchen Chen, Haoshen Zhu, Liang Wu, Wenquan Che, Quan Xue. A 9.8–30.1 GHz CMOS low-noise amplifier with a 3.2-dB noise figure using inductor- and transformer-based gm-boosting techniques[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 586-598.
@article{title="A 9.8–30.1 GHz CMOS low-noise amplifier with a 3.2-dB noise figure using inductor- and transformer-based gm-boosting techniques",
author="Hongchen Chen, Haoshen Zhu, Liang Wu, Wenquan Che, Quan Xue",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="4",
pages="586-598",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000510"
}
%0 Journal Article
%T A 9.8–30.1 GHz CMOS low-noise amplifier with a 3.2-dB noise figure using inductor- and transformer-based gm-boosting techniques
%A Hongchen Chen
%A Haoshen Zhu
%A Liang Wu
%A Wenquan Che
%A Quan Xue
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 4
%P 586-598
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000510
TY - JOUR
T1 - A 9.8–30.1 GHz CMOS low-noise amplifier with a 3.2-dB noise figure using inductor- and transformer-based gm-boosting techniques
A1 - Hongchen Chen
A1 - Haoshen Zhu
A1 - Liang Wu
A1 - Wenquan Che
A1 - Quan Xue
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 4
SP - 586
EP - 598
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000510
Abstract: A 9.8–30.1 GHz CMOS low-noise amplifier (LNA) with a 3.2-dB minimum noise figure (NF) is presented. At the architecture level, a topology based on common-gate (CG) cascading with a common-source (CS) amplifier is proposed for simultaneous wideband input matching and relatively high gain. At the circuit level, multiple techniques are proposed to improve LNA performance. First, in the CG stage, loading effect is properly used instead of the conventional feedback technique, to enable simultaneous impedance and noise matching. Second, based on in-depth theoretical analysis, the inductor- and transformer-based gm-boosting techniques are employed for the CG and CS stages, respectively, to enhance the gain and reduce power consumption. Third, the floating-body method, which was originally proposed to lower NF in CS amplifiers, is adopted in the CG stage to further reduce NF. Fabricated in a 65-nm CMOS technology, the LNA chip occupies an area of only 0.2 mm2 and measures a maximum power gain of 10.9 dB with −3 dB bandwidth from 9.8 to 30.1 GHz. The NF exhibits a minimum value of 3.2 dB at 15 GHz and is below 5.7 dB across the entire bandwidth. The LNA consumes 15.6 mW from a 1.2-V supply.
[1]Andreani P, Sjoland H, 2001. Noise optimization of an inductively degenerated CMOS low noise amplifier. IEEE Trans Circ Syst II, 48(9):835-841.
[2]Borremans J, Wambacq P, Soens C, et al., 2008. Low-area active-feedback low-noise amplifier design in scaled digital CMOS. IEEE J Sol-State Circ, 43(11):2422-2433.
[3]cCaicskan C, Kalyoncu I, Yazici M, et al., 2019. Sub-1-dB and wideband SiGe BiCMOS low-noise amplifiers for X-band applications. IEEE Trans Circ Syst I, 66(4):1419-1430.
[4]Chen HC, Wu L, Che WQ, et al., 2019. A wideband LNA based on current-reused CS-CS topology and G m-boosting technique for 5G application. IEEE Asia-Pacific Microwave Conf, p.1158-1160.
[5]Chen HK, Chen HJ, 2005. A 5.2-GHz cascade-MOS 0.35-µm BiCMOS technology ultra-low-power LNA using a novel floating-body method. Microw Opt Technol Lett, 45(5):363-367.
[6]Chen WL, Chang SF, Chen KM, et al., 2009. Temperature effect on Ku-band current-reused common-gate LNA in 0.13-µm CMOS technology. IEEE Trans Microw Theory Techn, 57(9):2131-2138.
[7]Cui BL, Long JR, 2020. A 1.7-dB minimum NF, 22–32-GHz low-noise feedback amplifier with multistage noise matching in 22-nm FD-SOI CMOS. IEEE J Sol-State Circ, 55(5):1239-1248.
[8]Fu CT, Kuo CN, Taylor SS, 2010. Low-noise amplifier design with dual reactive feedback for broadband simultaneous noise and impedance matching. IEEE Trans Microw Theory Techn, 58(4):795-806.
[9]Guan X, Hajimiri A, 2004. A 24-GHz CMOS front-end. IEEE J Sol-State Circ, 39(2):368-373.
[10]Guo ST, Xi TZ, Gui P, et al., 2014. 54 GHz CMOS LNAs with 3.6 dB NF and 28.2 dB gain using transformer feedback Gm-boosting technique. IEEE Asian Solid-State Circuits Conf, p.185-188.
[11]Guo ST, Xi TZ, Gui P, et al., 2016. A transformer feedback Gm-boosting technique for gain improvement and noise reduction in mm-Wave cascode LNAs. IEEE Trans Microw Theory Techn, 64(7):2080-2090.
[12]Kim J, Hoyos S, Silva-Martinez J, 2010. Wideband common-gate CMOS LNA employing dual negative feedback with simultaneous noise, gain, and bandwidth optimization. IEEE Trans Microw Theory Techn, 58(9):2340-2351.
[13]Leung HF, Luong HC, 2012. A 1.2–6.6 GHz LNA using transformer feedback for wideband input matching and noise cancellation in 0.13 µm CMOS. IEEE Radio Frequency Integrated Circuits Symp, p.17-20.
[14]Li CJ, El-Aassar O, Kumar A, et al., 2018. LNA design with CMOS SOI process—l.4dB NF K/Ka band LNA. IEEE/MTT-S Int Microwave Symp, p.1484-1486.
[15]Li N, Feng WW, Li XP, 2017. A CMOS 3–12-GHz ultrawideband low noise amplifier by dual-resonance network. IEEE Microw Wirel Compon Lett, 27(4):383-385.
[16]Li XY, Shekhar S, Allstot DJ, 2005. Low-power gm-boosted LNA and VCO circuits in 0.18µm CMOS. IEEE Int Solid-State Circuits Conf, p.534-615.
[17]Liscidini A, Brandolini M, Sanzogni D, et al., 2006. A 0.13 µm CMOS front-end, for DCS1800/UMTS/linebreak 802.11b-g with multiband positive feedback low-noise amplifier. IEEE J Sol-State Circ, 41(4):981-989.
[18]Lo YT, Kiang JF, 2011. Design of wideband LNAs using parallel-to-series resonant matching network between common-gate and common-source stages. IEEE Trans Microw Theory Techn, 59(9):2285-2294.
[19]Pan DF, Duan ZM, Chakraborty S, et al., 2019. A 60–90-GHz CMOS double-neutralized LNA technology with 6.3-dB NF and −10dBm P−1 dB. IEEE Microw Wirel Compon Lett, 29(7):489-491.
[20]Parvizi M, Allidina K, El-Gamal MN, 2016a. Short channel output conductance enhancement through forward body biasing to realize a 0.5 V 250 µW 0.6–4.2 GHz current-reuse CMOS LNA. IEEE J Sol-State Circ, 51(3):574-586.
[21]Parvizi M, Allidina K, El-Gamal MN, 2016b. An ultra-low-power wideband inductorless CMOS LNA with tunable active shunt-feedback. IEEE Trans Microw Theory Techn, 64(6):1843-1853.
[22]Qayyum JA, Albrecht J, Papapolymerou J, et al., 2019. A 28–60 GHz SiGe HBT LNA with 2.4–3.4 dB noise figure. 49th European Microwave Conf, p.804-807.
[23]Qin P, Xue Q, 2017a. Compact wideband LNA with gain and input matching bandwidth extensions by transformer. IEEE Microw Wirel Compon Lett, 27(7):657-659.
[24]Qin P, Xue Q, 2017b. Design of wideband LNA employing cascaded complimentary common gate and common source stages. IEEE Microw Wirel Compon Lett, 27(6):587-589.
[25]Reiha MT, Long JR, 2007. A 1.2 V reactive-feedback 3.1–10.6 GHz low-noise amplifier in 0.13 µm CMOS. IEEE J Sol-State Circ, 42(5):1023-1033.
[26]Woo S, Kim W, Lee CH, et al., 2012. A wideband low-power CMOS LNA with positive-negative feedback for noise, gain, and linearity optimization. IEEE Trans Microw Theory Techn, 60(10):3169-3178.
[27]Wu L, Leung HF, Luong HC, 2017. Design and analysis of CMOS LNAs with transformer feedback for wideband input matching and noise cancellation. IEEE Trans Circ Syst I, 64(6):1626-1635.
[28]Ye RF, Horng TS, Wu JM, 2011. Wideband common-gate low-noise amplifier with dual-feedback for simultaneous input and noise matching. IEEE Radio Frequency Integrated Circuits Symp, p.1-4.
[29]Ye RF, Horng TS, Wu JM, 2013. Two CMOS dual-feedback common-gate low-noise amplifiers with wideband input and noise matching. IEEE Trans Microw Theory Techn, 61(10):3690-3699.
[30]Zhang JJ, Zhao DX, You XH, 2020. A 20-GHz 1.9-mW LNA using gm-boost and current-reuse techniques in 65-nm CMOS for satellite communications. IEEE J Sol-State Circ, 55(10):2714-2723.
[31]Zhuo W, Embabi S, de Gyvez JP, et al., 2000. Using capacitive cross-coupling technique in RF low noise amplifiers and down-conversion mixer design. Proc 26th European Solid-State Circuits Conf, p.77-80.
Open peer comments: Debate/Discuss/Question/Opinion
<1>