CLC number: O431.2; O562
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 4852
LIU Zheng-dong, ZENG Liang, LIN Yu, PAN Qin-min, LU Yan. INTERFEROMETRIC MEASUREMENT OF AN ATOMIC WAVE FUNCTION BY USING A STANDING WAVE METHOD[J]. Journal of Zhejiang University Science A, 2000, 1(3): 275-280.
@article{title="INTERFEROMETRIC MEASUREMENT OF AN ATOMIC WAVE FUNCTION BY USING A STANDING WAVE METHOD",
author="LIU Zheng-dong, ZENG Liang, LIN Yu, PAN Qin-min, LU Yan",
journal="Journal of Zhejiang University Science A",
volume="1",
number="3",
pages="275-280",
year="2000",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2000.0275"
}
%0 Journal Article
%T INTERFEROMETRIC MEASUREMENT OF AN ATOMIC WAVE FUNCTION BY USING A STANDING WAVE METHOD
%A LIU Zheng-dong
%A ZENG Liang
%A LIN Yu
%A PAN Qin-min
%A LU Yan
%J Journal of Zhejiang University SCIENCE A
%V 1
%N 3
%P 275-280
%@ 1869-1951
%D 2000
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2000.0275
TY - JOUR
T1 - INTERFEROMETRIC MEASUREMENT OF AN ATOMIC WAVE FUNCTION BY USING A STANDING WAVE METHOD
A1 - LIU Zheng-dong
A1 - ZENG Liang
A1 - LIN Yu
A1 - PAN Qin-min
A1 - LU Yan
J0 - Journal of Zhejiang University Science A
VL - 1
IS - 3
SP - 275
EP - 280
%@ 1869-1951
Y1 - 2000
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2000.0275
Abstract: In this paper, the authors present the results of their study on the scheme of reconstructing the atomic wave function by using a standing wave laser beam. The scheme effectively avoids the initial random phase problem of the running light wave of lasers. The paper presents the relation between measured data and the atomic wave function, whose reconstruction procedure is also analyzed.
[1]Bardroff, P. J., Leichtle, C. and Schrade, G., et al., 1996. Endoscopy in the paul trap: measurement of the vibratory quantum state of a single ion. Phys. Rev. Lett., 77: 2198-2201.
[2]Bardroff, P. J., Mayr, E. and Schleich, W. P., 1995. Quantum state endoscopy: measurement of the quantum state in a cavity. Phys. Rev. A, 51: 4963-4966.
[3]Bardroff, P. J., Mayr, E. and Schleich, W. P., et al., 1996. Simulation of quantum-state endoscopy. Phys. Rev. A, 53: 2736-2741.
[4]D'Ariano, G. M., Leonhardt, U. and Paul, H., 1995. Homodyne detection of the density matrix of the radiation field. Phys. Rev. A, 52: 1801-1804.
[5]Dunn, T. J., Sweetser, J. N. and Walmsley, I. A., et al., 1993. Experimental determination of the dynamics of a molecular nuclear wave packet via the spectra of spontaneous emission. Phys. Rev. Lett., 70: 3388-3391.
[6]Freyberger, M., Kienle, S. H. and Yakovlev, V. P., 1997. Interferometric measurement of an atomic wave function. Phys. Rev. A, 56: 195-201.
[7]Herkommer, A. M., Akulin, V. M. and Schleich, W. P., 1992. Quantum demolition measurement of photon statistics by atomic beam deflection. Phys. Rev. Lett., 69: 3298-3301.
[8]Jones, K. R. W., 1994. Fundamental limits upon the measurement of state vectors. Phys. Rev. A, 50: 3682-3699.
[9]Leibgried, D., Meekhof, D. M. and King, B. E. et al., 1996. Experimental determination of the motional quantum state of a trapped atom. Phys. Rev. Lett., 77: 4281-4285.
[10]Liu, Z. D., Zhu, S. Y. and Lin, Y., 2000. A Scheme of Interferometric Measurement of an Atomic Wave Function. Chin. Phys. Lett., 17(3): 165-167.
[11]Raymer, M. G., Beck, M. and McAlister, D. F., 1994. Complex wave-field reconstruction using phase-space tomography. Phys. Rev. Lett., 72: 1137-1140.
[12]Vogel, K. and Risken, H., 1989. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys.Rev.A,40:2847-2849.
[13]Weigert, S., 1996. How to determine a quantum state by measurements: the pauli problem for a particle with arbitrary potential. Phys. Rev. A, 53: 2078-2083.
Open peer comments: Debate/Discuss/Question/Opinion
<1>