CLC number: P58; P59
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 8
Clicked: 9619
LI Zi-long, CHEN Han-lin, Santosh M., YANG Shu-feng. Discovery of ultrahigh-T spinel garnet granulite with pure CO2 fluid inclusions from the Altay orogenic belt, NW China[J]. Journal of Zhejiang University Science A, 2004, 5(10): 1180-1182.
@article{title="Discovery of ultrahigh-T spinel garnet granulite with pure CO2 fluid inclusions from the Altay orogenic belt, NW China",
author="LI Zi-long, CHEN Han-lin, Santosh M., YANG Shu-feng",
journal="Journal of Zhejiang University Science A",
volume="5",
number="10",
pages="1180-1182",
year="2004",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2004.1180"
}
%0 Journal Article
%T Discovery of ultrahigh-T spinel garnet granulite with pure CO2 fluid inclusions from the Altay orogenic belt, NW China
%A LI Zi-long
%A CHEN Han-lin
%A Santosh M.
%A YANG Shu-feng
%J Journal of Zhejiang University SCIENCE A
%V 5
%N 10
%P 1180-1182
%@ 1869-1951
%D 2004
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2004.1180
TY - JOUR
T1 - Discovery of ultrahigh-T spinel garnet granulite with pure CO2 fluid inclusions from the Altay orogenic belt, NW China
A1 - LI Zi-long
A1 - CHEN Han-lin
A1 - Santosh M.
A1 - YANG Shu-feng
J0 - Journal of Zhejiang University Science A
VL - 5
IS - 10
SP - 1180
EP - 1182
%@ 1869-1951
Y1 - 2004
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2004.1180
Abstract: We first report discovery of the spinel-garnet-orthopyroxene granulite with pure CO2 fluid inclusions from the Fuyun region of the late Paleozoic altay orogenic belt in Central Asia, NW China. The rock is characterized by an assemblage of garnet, orthopyroxene, spinel, cordierite, biotite, plagioclase and quartz. Symplectites of orthopyroxene and spinel, and orthopyroxene and cordierite indicate decompression under UHT conditions. Mineral chemistry shows that the orthopyroxenes have high XMg and Al2O3 contents (up to 9.23 wt%). Biotites are enriched in TiO2 and XMg and are stable under granulite facies conditions. The garnet and quartz from the rock carry monophase fluid inclusions which show peak melting temperatures of around −56.7 °C, indicating a pure CO2 species being presented during the ultrahigh-T metamorphism in the altay orogenic belt. The inclusions homogenize into a liquid phase at temperatures around 15.3–23.8 °C translating into CO2 densities of the order of 0.86–0.88 g/cm3. Based on preliminary mineral paragenesis, reaction textures and petrogenetic grid considerations, we infer that the rock was subjected to UHT conditions. The CO2-rich fluids were trapped during exhumation along a clockwise P-T path following isothermal decompression under UHT conditions.
[1] Brandt, S., Klemd, R., Okrusch, M., 2003. Ultrahigh-temperature metamorphism and multistage evolution of garnet-orthopyroxene granulites from the Proterozoic Epupa Complex, NW Namibia. Journal of Petrology, 44(6):1121-1144.
[2] Brown, M., Raith, M., 1996. First evidence of ultrahigh-temperature decompression from the granulite province of southern India. Journal Geological Society of London, 153:819-822.
[3] Coleman, R.G., 1989. Continental growth of northwest China. Tectonics, 8:621-635.
[4] Han, B., Wang, S., Jahn, B., Hong, D., Kagami, H., Sun, Y., 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology, 138:135-159.
[5] Li, T., Poliyangsiji, B.H., 2001. Tectonics and crustal evolution of Altay in China and Kazakhstan. Xinjiang Geology, 19:27-32 (in Chinese with English abstract).
[6] Li, Z.L., Chen, H.L., Yang, S.F., Xiao, W.J., Li, J., Ye, Y., Wang, J., 2004a. Discovery and genetic mechanism of basic granulite from the Altay orogenic belt, Xinjiang, NW China. Acta Geologica Sinica, 78(1):147-155.
[7] Li, Z.L., Chen, H.L., Yang, S.F., Xiao, W.J., 2004b. Petrology, geochemistry and geodynamics of basic granulite from the Altay area, North Xinjiang, China. Journal of Zhejiang University SCIENCE, 5(8):979-984.
[8] Marschall, H.R., Kalt, A., Hanel, M., 2003. P-T evolution of a Variscan lower-crustal segment: a study of granulites from the Schwarzwald, Germany. Journal of Petrology, 44(2):227-253.
[9] Martignole, J., Martelat, J.E., 2003. Regional-scale Grenvillian-age UHT metamorphism in the Mollendo-Camana Block (basement of the Peruvian Andes). Journal of Metamorphic Geology, 21(1):99-120.
[10] Moller, A., O’Brien, P.J., Kennedy, A., Kroner, A., 2002. Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon. Journal of Metamorphic Geology, 20(8):727-740.
[11] Moraes, R., Brown, M., Fuck, R.A., Camargo, M.A., Lima, T.M., 2002. Characterization and P-T evolution of melt-bearing ultrahigh-temperature granulites: An example from the Anapolis-Itaucu Complex of the Brasilia Fold Belt, Brazil. Journal of Petrology, 43(9):1673-1705.
[12] Osanai, Y., Ando, K., Miyashita, Y., Kusachi, I., Yamasaki, T., Doyama, D., Prame, W.K.B.N., Jayatileke, S., Mathavan, V., 2000. Geological field work in the southwestern and central parts of the Highland complex, Sri Lanka during 1998-1999, special reference to the highest grade metamorphic rocks. Journal Geoscience, 43:227-247.
[13] Paquette, J.L., Goncalves, P., Devouard, B., Nicollet, C., 2004. Micro-drilling ID-TIMS U-Pb dating of single monazites: A new method to unravel complex poly-metamorphic evolutions. Application to the UHT granulites of Andriamena (North-Central Madagascar). Contrib. Mineral. Petrol., 147(1):110-122.
[14] Raith, M., Karmakar, S., Brown, M., 1997. Ultrahigh-temperature metamorphism and multi-stage decompressional evolution of sappirine granulites from the Palni hill ranges, south India. Journal of Metamorphic Geology, 19:561-580.
[15] Rotzler, J., Romer, R.L., 2001. P-T-t evolution of ultrahigh-temperature granulites from the Saxon Granulite Massif, Germany. Part I: Petrology. Journal of Petrology, 42(11):1995-2013.
[16] Sajeev, K., Osanai, Y., Santosh, M., 2001. Ultrahigh-temperature stability of sapphirine and kornerupine in Ganguvarpatti granulite, Madurai Block, Southern India. Gondwana Research, 4:762-766.
[17] Santosh, M., Tsunogae, T., 2003. Extremely high density pure CO2 fluid inclusions in a garnet granulite from southern India. J. Geol., 111(1):1-16.
[18] Sengör, A.M.C., Natal’In, B.A., Burtman, V.S., 1993. Evoluation of the Altoid tectonic collage and Paleozoic crustal in Eurasia. Nature, 364:299-307.
[19] Tsunogae, T., Osanai, Y., Owada, M., Toyoshima, T., Hakada, T., 2001. Field occurrence of high- and ultrahigh-temperature metamorphic rocks and related igneous rocks from the Kontum Massif, Central Vietnam. Gondwana Res., 4(2):236-241.
[20] Tsunogae, T., Santosh, M., Osanai, Y., Owada, M., Toyoshima, T., Hakada, T., 2002. Very high-density carbonic fluid inclusions in sapphirine-bearing granulites from Tonagh Island in the Archean Napier Complex, East Antarctica: implications for CO2 infiltration during ultrahigh-temperature (T>1100 (C) metamorphism. Contrib. Mineral. Petrol., 143(3):279-299.
[21] Windley, B.F., Kröner, A., Guo, J., Qu, G., Li, Y., Zhang, C., 2002. Neoproterozoic to Paleozoic geology of the Altay orogen, NW China: New zircon age data and tectonic evolution. Journal of Geology, 110:719-739.
[22] Xiao, W., Windley, B., Badarch, G., Sun, S., Li, J., Qin, K., Wang, Z., 2004. Palaeozoic accretionary and convergent tectonics of the southern Altayds: implications for the lateral growth of Central Asia. Journal of the Geological Society, 161:339-342.
Open peer comments: Debate/Discuss/Question/Opinion
<1>