CLC number: TN76
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5333
DONG Mian, ZHANG Chun, MAI Song-ping, WANG Zhi-hua, LI Dong-mei. A wideband frequency-shift keying demodulator for wireless neural stimulation microsystems[J]. Journal of Zhejiang University Science A, 2006, 7(6): 1056-1060.
@article{title="A wideband frequency-shift keying demodulator for wireless neural stimulation microsystems",
author="DONG Mian, ZHANG Chun, MAI Song-ping, WANG Zhi-hua, LI Dong-mei",
journal="Journal of Zhejiang University Science A",
volume="7",
number="6",
pages="1056-1060",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1056"
}
%0 Journal Article
%T A wideband frequency-shift keying demodulator for wireless neural stimulation microsystems
%A DONG Mian
%A ZHANG Chun
%A MAI Song-ping
%A WANG Zhi-hua
%A LI Dong-mei
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 6
%P 1056-1060
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1056
TY - JOUR
T1 - A wideband frequency-shift keying demodulator for wireless neural stimulation microsystems
A1 - DONG Mian
A1 - ZHANG Chun
A1 - MAI Song-ping
A1 - WANG Zhi-hua
A1 - LI Dong-mei
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 6
SP - 1056
EP - 1060
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1056
Abstract: This paper presents a wideband frequency-shift keying (FSK) demodulator suitable for a digital data transmission chain of wireless neural stimulation microsystems such as cochlear implants and retinal prostheses. The demodulator circuit derives a constant frequency clock directly from an FSK carrier, and uses this clock to sample the data bits. The circuit occupies 0.03 mm2 using a 0.6 μm, 2M/2P, standard CMOS process, and consumes 0.25 mW at 5 V. This circuit was experimentally tested at transmission speed of up to 2.5 Mbps while receiving a 5~10 MHz FSK carrier signal in a cochlear implant system.
[1] Dong, M., Zhang, C., Wang, Z.H., Li, D.M., 2004. A Neuro-Stimulus Chip with Telemetry Unit for Cochlear Implant. Proc. 2004 IEEE International Workshop on Biomedical Circuits and Systems, ppS1.3.INV-9. Singapore.
[2] Galbraith, D., Soma, M., White, R., 1987. A wide-band efficient inductive transdermal power and data link with coupling insensitive gain. IEEE Trans. Biomed. Eng., 34:265-275.
[3] Ghovanloo, M., 2004. A wideband frequency-shift keying wireless link for inductively powered biomedical implants. IEEE Trans. Circuits & Systems—I: Regular Papers, 51(12):2374-2383.
[4] Heetderks, W., 1988. RF powering of millimiter- and submillimeter-sized neural prosthetic implants. IEEE Trans. Biomed. Eng., 35(5):323-327.
[5] Ko, W.H., Liang, S.P., Fung, C.D., 1977. Design of radio-frequency powered coils for implant instruments. Med. Bio. Eng. Comput., 15:634-640.
[6] Lin, J., 1986. Computer Methods for Field Intensity Predictions. In: Polk, C., Postow, E. (Eds.), CRC Handbook of Biological Effects of Electromagnetic Fields. CRC Press, Boca Raton, FL, p.273-313.
[7] Liu, W., Vichienchom, K., Clements, M., DeMarco, S.C., Hughes, C., McGucken, E., Humayun, M.S., De Juan, E., Weiland, J.D., Greenberg, R., 2000. A neuro-stimulus chip with telemetry unit for retinal prosthetic device. IEEE J. Solid-State Circuits, 35(10):1487-1497.
[8] McDermott, H., 1989. An advanced multiple channel cochlear implant. IEEE Trans. Biomed. Eng., 36(7):789-797.
[9] Rauschecker, J., Shannon, R., 2002. Sending sound to the brain. Science, 295(5557):1025-1029.
[10] Suaning, G., Lovell, N., 2001. CMOS neuro-stimulation ASIC with 100 channels, scalable output, and bidirectional radio-frequency. telemetry. IEEE Trans. Biomed. Eng., 48(2):248-260.
[11] Troyk, P., 2001. Development of BION Technology for Functional Electrical Stimulation: Bidirectional Telemetry. Proc. 23rd IEEE-EMBS Conf., 2:1317-1320.
[12] Zhang, L., Wang, Z.H., Li, Y.M., Zhang, C., Wang, Z.H., Chen, H.Y., 2005. Clock generator and OOK modulator for RFID application. Journal of Zhejiang Univ. Sci., 6A(10):1051-1054.
[13] Zierhofer, C., Hochmair, E., 1990. High-efficiency coupling-insensitive transcutaneous power and data transmission via an inductive link. IEEE Trans. Biomed. Eng., 37(7):716-722.
[14] Zierhofer, C., Hochmair, E., 1996. Geometric approach for coupling enhancement of magnetically coupled coils. IEEE Trans. Biomed. Eng., 43(7):708-714.
[15] Zierhofer, C., Hochmair-Desoyer, I., Hochmair, E., 1995. Electronic design of a cochlear implant for multichannel high-rate pulsatile stimulation strategies. IEEE Trans. on Rehab. Eng., 3(1):112-116.
[16] Zrenner, E., 2002. Will retinal implants restore vision? Science, 295(5557):1022-1025.
Open peer comments: Debate/Discuss/Question/Opinion
<1>