Full Text:   <3540>

Summary:  <2151>

CLC number: TH137.52

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-03-15

Cited: 0

Clicked: 5493

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Da-yun Yi

http://orcid.org/0000-0001-9274-6632

Liang Lu

http://orcid.org/0000-0002-9403-330X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.4 P.317-324

http://doi.org/10.1631/jzus.A1400351


Squeal noise in hydraulic poppet valves


Author(s):  Da-yun Yi, Liang Lu, Jun Zou, Xin Fu

Affiliation(s):  The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   luliang829@zju.edu.cn

Key Words:  Poppet valve, Squeal noise, Helmholtz resonance, Fluid acoustics, Shear layer instability



Abstract: 
The poppet valve is a fundamental component in fluid power systems. Under particular conditions, annoying “squeal” noises may be generated in hydraulic poppet valves. In the present study, the frequency spectrum of the squeal noise is obtained by analyzing the sampling data from the accelerometer mounted on the valve body. It is found that the flow velocity, pressure, and structural parameters have crucial effects on the properties of squeal noise, especially frequency. Larger valve chamber volume or lower backpressure leads to lower fundamental frequency of the squeal noise. An explanation for the squeal noise, as a result of helmholtz resonance, is suggested and proved by experimental results.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE