CLC number: S18
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-08-09
Cited: 28
Clicked: 7386
Ya-ming Gong, Sheng-chun Xu, Wei-hua Mao, Qi-zan Hu, Gu-wen Zhang, Ju Ding, Ya-dan Li. Developing new SSR markers from ESTs of pea (Pisum sativum L.)[J]. Journal of Zhejiang University Science B, 2010, 11(9): 702-707.
@article{title="Developing new SSR markers from ESTs of pea (Pisum sativum L.)",
author="Ya-ming Gong, Sheng-chun Xu, Wei-hua Mao, Qi-zan Hu, Gu-wen Zhang, Ju Ding, Ya-dan Li",
journal="Journal of Zhejiang University Science B",
volume="11",
number="9",
pages="702-707",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1000004"
}
%0 Journal Article
%T Developing new SSR markers from ESTs of pea (Pisum sativum L.)
%A Ya-ming Gong
%A Sheng-chun Xu
%A Wei-hua Mao
%A Qi-zan Hu
%A Gu-wen Zhang
%A Ju Ding
%A Ya-dan Li
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 9
%P 702-707
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000004
TY - JOUR
T1 - Developing new SSR markers from ESTs of pea (Pisum sativum L.)
A1 - Ya-ming Gong
A1 - Sheng-chun Xu
A1 - Wei-hua Mao
A1 - Qi-zan Hu
A1 - Gu-wen Zhang
A1 - Ju Ding
A1 - Ya-dan Li
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 9
SP - 702
EP - 707
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000004
Abstract: The development of expressed sequence tags (ESTs) from pea has provided a useful source for mining novel simple sequence repeat (SSR) markers. In the present research, in order to find EST-derived SSR markers, 18 552 pea ESTs from the National Center for Biotechnology Information (NCBI) database were downloaded and assembled into 10 086 unigenes. A total of 586 microsatellites in 530 unigenes were identified, indicating that merely 5.25% of sequences contained SSRs. The most abundant SSRs within pea were tri-nucleotide repeat motifs, and among all the tri-nucleotide repeats, the motif GAA was the most abundant type. In total, 49 SSRs were used for primer design. EST-SSR loci were subsequently screened on 10 widely adapted varieties in China. Of these, nine loci showed polymorphic profiles that revealed two to three alleles per locus. The polymorphism information content value ranged from 0.18 to 0.58 with an average of 0.41. Furthermore, transferable analysis revealed that some of these loci showed transferability to faba bean. Because of their polymorphism and transferability, these nine novel EST-SSRs will be valuable tools for marker-assisted breeding and comparative mapping of pea in the future.
[1]Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D., Sorrells, M.E., 1993. Optimizing parental selection for genetic linkage maps. Genome, 36(1):181-186.
[2]Burstin, J., Deniot, G., Potier, J., Weinachter, C., Aubert, G., Baranger, A., 2001. Microsatellite polymorphism in Pisum sativum. Plant Breed., 120(4):311-317.
[3]Cardle, L., Ramsay, L., Milbourne, D., Macaulay, M., Marshall, D., Waugh, R., 2000. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics, 156:847-854.
[4]Choudhary, S., Sethy, N.K., Shokeen, B., Bhatia, S., 2009. Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theor. Appl. Genet., 118(3):591-608.
[5]Ellis, J.R., Burke, J.M., 2007. EST-SSRs as a resource for population genetic analyses. Heredity, 99(2):125-132.
[6]Eujayl, I., Sorrells, M.E., Baum, M., Wolters, P., Powell, W., 2002. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor. Appl. Genet., 104(2-3):399-407.
[7]Gupta, P.K., Rustgi, S., Sharma, S., Singh, R., Kumar, N., Balyan, H.S., 2003. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol. Genet. Genom., 270(4):315-323.
[8]Gutierrez, M.V., Vaz Patto, M.C., Huguet, T., Cubero, J.I., Moreno, M.T., Torres, A.M., 2005. Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor. Appl. Genet., 110(7):1210-1217.
[9]Kong, Q., Xiang, C., Yu, Z., Zhang, C., Liu, F., Peng, C., Peng X., 2007. Mining and charactering microsatellites in Cucumis melo expressed sequence tags from sequence database. Mol. Ecol. Notes, 7(2):281-283.
[10]Loridon, K., McPhee, J., Morin, J., Dubreuil, P., Pilet-Nayel, M.L., Aubert, G., Rameau, C., Baranger, A., Coyne, C., Lejeune-Hènaut, I., et al., 2005. Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor. Appl. Genet., 111(6):1022-1031.
[11]Metzgar, D., Bytof, J., Wills, C., 2000. Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res., 10(1):72-80.
[12]Poncet, V., Rondeau, M., Tranchant, C., Cayrel, A., Hamon, S., de Kochko, A., Hamon, P., 2006. SSR mining in coffee tree EST databases: potential use of EST-SSRs as markers for the Coffea genus. Mol. Genet. Genom., 276(5):436-449.
[13]Powell, W., Machray, G.C., Provan, J., 1996. Polymorphism revealed by simple sequence repeats. Trends Plant Sci., 1(7):215-222.
[14]Saha, M.C., Cooper, J.D., Rouf Mian, M.A., Chekhovskiy, K., May, G.D., 2006. Tall fescue genomic SSR markers: development and transferability across multiple grass species. Theor. Appl. Genet., 113(8):1449-1458.
[15]Scott, K.D., Eggler, P., Seaton, G., Rossetto, M., Ablett, E.M., Lee, L.S., Henry, R.J., 2000. Analysis of SSRs derived from grape ESTs. Theor. Appl. Genet., 100(5):723-726.
[16]Squirrell, J., Hollingsworth, P.M., Woodhead, M., Russell, J., Lowe, A.J., Gibby, M., Powell, W., 2003. How much effort is required to isolate nuclear microsatellites from plants? Mol. Ecol., 12(6):1339-1348.
[17]Tangphatsornruang, S., Sraphet, S., Singh, R., Okogbenin, E., Fregene, M., Triwitayakorn, K., 2008. Development of polymorphic markers from expressed sequence tags of Manihot esculenta Crantz. Mol. Ecol. Resour., 8(3):682-685.
[18]Thiel, T., Michalek, W., Varshney, R.K., Graner, A., 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet., 106(3):411-422.
[19]Tian, A.G., Wang, J., Cui, P., Han, Y.J., Xu, H., Cong, L.J., Guang, X.G., Wang, X.L., Jiao, Y.Z., Wang, B.J., et al., 2004. Characterization of soybean genomic features by analysis of its expressed sequence tags. Theor. Appl. Genet., 108(5):903-913.
[20]Ueno, S., Taguchi, Y., Tsumura, Y., 2008. Microsatellite markers derived from Quercus mongolica var. crispula (Fagaceae) inner bark expressed sequence tags. Genes Genet. Syst., 83(2):179-187.
[21]Varshney, R.K., Graner, A., Sorrells, M.E., 2005. Genic microsatellite markers in plants: features and applications. Trends Biotechnol., 23(1):48-55.
[22]Yan, Q.L., Zhang, Y.H., Li, H.B., Wei, C.H., Niu, L.L., Guan, S., Li, S.G., Du, L.X., 2008. Identification of microsatellites in cattle unigenes. J. Genet. Genomics, 35(5):261-266.
[23]Yu, H., Li, Q., 2008. Exploiting EST databases for the development and characterization of EST-SSRs in the pacific oyster (Crassostrea gigas). J. Hered., 99(2):208-214.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
Amaravathi@ANGRAU<dryellaridreddy@gmail.com>
2014-06-09 13:36:28
INTERESTING ARTICLE