Full Text:   <3097>

Summary:  <2044>

CLC number: Q89; Q945

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-08-07

Cited: 7

Clicked: 6180

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.9 P.788-800

http://doi.org/10.1631/jzus.B1400029


Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction*


Author(s):  Wei-dong Yang1, Yu-yan Wang1, Feng-liang Zhao1,2, Zhe-li Ding1, Xin-cheng Zhang1, Zhi-qiang Zhu1,3, Xiao-e Yang1

Affiliation(s):  1. Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   xyang571@yahoo.com

Key Words:  Salix spp., Copper, Zinc, Accumulation, Tolerance, Hydroponic screening


Wei-dong Yang, Yu-yan Wang, Feng-liang Zhao, Zhe-li Ding, Xin-cheng Zhang, Zhi-qiang Zhu, Xiao-e Yang. Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction[J]. Journal of Zhejiang University Science B, 2014, 15(9): 788-800.

@article{title="Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction",
author="Wei-dong Yang, Yu-yan Wang, Feng-liang Zhao, Zhe-li Ding, Xin-cheng Zhang, Zhi-qiang Zhu, Xiao-e Yang",
journal="Journal of Zhejiang University Science B",
volume="15",
number="9",
pages="788-800",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400029"
}

%0 Journal Article
%T Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction
%A Wei-dong Yang
%A Yu-yan Wang
%A Feng-liang Zhao
%A Zhe-li Ding
%A Xin-cheng Zhang
%A Zhi-qiang Zhu
%A Xiao-e Yang
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 9
%P 788-800
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400029

TY - JOUR
T1 - Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction
A1 - Wei-dong Yang
A1 - Yu-yan Wang
A1 - Feng-liang Zhao
A1 - Zhe-li Ding
A1 - Xin-cheng Zhang
A1 - Zhi-qiang Zhu
A1 - Xiao-e Yang
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 9
SP - 788
EP - 800
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400029


Abstract: 
Willows (Salix spp.) have shown high potential for the phytoextraction of heavy metals. This study compares variations in copper (Cu) and zinc (Zn) tolerance and accumulation potential among 12 willow clones grown in a nutrient solution treated with 50 μmol/L of Cu or Zn, respectively. The results showed differences in the tolerance and accumulation of Cu and Zn with respect to different species/clones. The biomass variation among clones in response to Cu or Zn exposure ranged from the stimulation of growth to inhibition, and all of the clones tested showed higher tolerance to Cu than to Zn. The clones exhibited less variation in Cu accumulation but larger variation in Zn accumulation. Based on translocation factors, it was found that most of the Cu was retained in the roots and that Zn was more mobile than Cu for all clones. It is concluded that most willow clones are good accumulators of Zn and Cu.

基于植物提取应用评价柳树无性系对铜锌耐性与富集的变异

研究目的:柳树(Salix spp.)已广泛用于修复重金属污染,而且修复效率与树种及无性系有关。目前涉及柳树研究主要为铜(Cu)和锌(Zn)的毒性效应,而不是富集能力。本研究以中国常见的柳树无性系评价对Cu和Zn耐性与富集能力。
创新要点:目前大多数研究仍集中Cu和Zn对柳树的毒性效应,尤其是Cu,对它们富集能力仍没有评价。中国为柳树的主要分布区。本文以12种优良的常见柳树无性系,通过温室营养液法评价对Cu和Zn耐性及富集潜力差异。利用柳树无性系的耐性与富集变异,旨在选择高耐性与高富集的无性系,提高环境修复效率和加快修复进程。
研究方法:选择高生物量12种柳树无性系,采用温室营养液培养法添加Cu或Zn处理,测定生物量参数并计算耐性指数,估计耐性差异;用原子吸收法测定组织中金属浓度并计算金属位移系数,评价富集差异。
重要结论:无性系对Cu和Zn耐性显著不同,生物量变化从无影响、抑制到促进生长。无性系对Cu耐性高于对Zn耐性,无性系对Zn富集变异幅度大于对Cu富集变异幅度。Cu主要富集于根部,而Zn较易运输到地上部分。总之测定的大部分柳树无性系为Cu与Zn高富集植物,显示出较高的植物提取能力。
柳树;铜;锌;耐性与富集;水培筛选

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Ait Ali, N., Bernal, M.P., Ater, M., 2002. Tolerance and bioaccumulation of copper in Phragmites australis and Zea maysPlant Soil, 239(1):103-111. 


[2] Ait Ali, N., Bernal, M.P., Ater, M., 2004. Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of cadmium, copper, and zinc. Aquat Bot, 80(3):163-176. 


[3] Ali, M.B., Vajpayee, P., Tripathi, R.D., 2003. Phytoremediation of lead, nickel, and copper by Salix acmophylla Boiss.: role of antioxidant enzymes and antioxidant substances. Bull Environ Contam Toxicol, 70(3):462-469. 


[4] Arduini, I., Ercoli, L., Mariotti, M., 2006. Response of miscanthus to toxic cadmium applications during the period of maximum growth. Environ Exp Bot, 55(1-2):29-40. 


[5] Baud, D.R., Pezeshki, S.R., 2011. Root porosity changes in Salix nigra cuttings in response to copper and ultraviolet-B radiation exposure. Water Air Soil Pollut, 221(1-4):99-105. 


[6] Borghi, M., Tognetti, R., Monteforti, G., 2007. Responses of Populus×euramericana (P. deltoides×P. nigra) clone Adda to increasing copper concentrations. Environ Exp Bot, 61(1):66-73. 


[7] Borghi, M., Tognetti, R., Monteforti, G., 2008. Responses of two poplar species (Populus alba and Populus×canadensis) to high copper concentrations. Environ Exp Bot, 62(3):290-299. 


[8] Castiglione, S., Todeschini, V., Franchin, C., 2009. Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: a large-scale field trial on heavily polluted soil. Environ Pollut, 157(7):2108-2117. 


[9] Colzi, I., Doumett, S., Del Bubba, M., 2011. On the role of the cell wall in the phenomenon of copper tolerance in Silene paradoxa L. Environ Exp Bot, 72(1):77-83. 


[10] Cosio, C., Vollenweider, P., Keller, C., 2006. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.): I. Macrolocalization and phytotoxic effects of cadmium. Environ Exp Bot, 58(1-3):64-74. 


[11] Dauthieu, M., Denaix, L., Nguyen, C., 2009. Cadmium uptake and distribution in Arabidopsis thaliana exposed to low chronic concentrations depends on plant growth. Plant Soil, 322(1-2):239-249. 


[12] Deng, D.M., Shu, W.S., Zhang, J., 2007. Zinc and cadmium accumulation and tolerance in populations of Sedum alfrediiEnviron Pollut, 147(2):381-386. 


[13] Disante, K.B., Fuentes, D., Cortina, J., 2010. Sensitivity to zinc of Mediterranean woody species important for restoration. Sci Total Environ, 408(10):2216-2225. 


[14] Dos Santos Utmazian, M.N., Wieshammer, G., Vega, R., 2007. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ Pollut, 148(1):155-165. 


[15] Guerra, F., Duplessis, S., Kohler, A., 2009. Gene expression analysis of Populus deltoides roots subjected to copper stress. Environ Exp Bot, 67(2):335-344. 


[16] Karp, A., Hanley, S.J., Trybush, S.O., 2011. Genetic improvement of willow for bioenergy and biofuelsfree access. J Integr Plant Biol, 53(2):151-165. 


[17] Komrek, M., Vaněk, A., Mrnka, L., 2010. Potential and drawbacks of EDDS-enhanced phytoextraction of copper from contaminated soils. Environ Pollut, 158(7):2428-2438. 


[18] Kopponen, P., Utriainen, M., Lukkari, K., 2001. Clonal differences in copper and zinc tolerance of birch in metal-supplemented soils. Environ Pollut, 112(1):89-97. 


[19] Kuzovkina, Y.A., Quigley, M.F., 2005. Willows beyond wetlands: uses of Salix L. species for environmental projects. Water Air Soil Pollut, 162(1-4):183-204. 


[20] Kuzovkina, Y.A., Volk, T.A., 2009. The characterization of willow (Salix L.) varieties for use in ecological engineering applications: co-ordination of structure, function and autecology. Ecol Eng, 35(8):1178-1189. 


[21] Kuzovkina, Y.A., Knee, M., Quigley, M.F., 2004. Cadmium and copper uptake and translocation in five willow (Salix L.) species. Int J Phytoremediat, 6(3):269-287. 


[22] Licht, L.A., Isebrands, J.G., 2005. Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenerg, 28(2):203-218. 


[23] Lpez-Gonzlvez, A., Probanza, A., Galli, V., 1999. Tolerance of some mediterranean crops to copper and zinc: implications in toxic metal clean up. Chem Ecol, 16(4):297-316. 


[24] Lu, L., Tian, S., Yang, X., 2013. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 14(2):106-114. 


[25] Maxted, A.P., Black, C.R., West, H.M., 2007. Phytoextraction of cadmium and zinc by Salix from soil historically amended with sewage sludge. Plant Soil, 290(1-2):157-172. 


[26] Mirck, J., Isebrands, J.G., Verwijst, T., 2005. Development of short-rotation willow coppice systems for environmental purposes in Sweden. Biomass Bioenerg, 28(2):219-228. 


[27] Mleczek, M., Kaczmarek, Z., Magdziak, Z., 2010. Hydroponic estimation of heavy metal accumulation by different genotypes of SalixJ Environ Sci Health A: Tox Hazard Subst Environ Eng, 45(5):569-578. 


[28] Monni, S., Salemaa, M., Millar, N., 2000. The tolerance of Empetrum nigrum to copper and nickel. Environ Pollut, 109(2):221-229. 


[29] Paschke, M.W., Perry, L.G., Redente, E.F., 2006. Zinc toxicity thresholds for reclamation forb species. Water Air Soil Pollut, 170(1-4):317-330. 


[30] Punshon, T., Dickinson, N.M., 1997. Acclimation of Salix to metal stress. New Phytol, 137(2):303-314. 


[31] Punshon, T., Lepp, N.W., Dickinson, N.M., 1995. Resistance to copper toxicity in some British willows. J Geochem Explor, 52(1-2):259-266. 


[32] Purdy, J.J., Smart, L.B., 2008. Hydroponic screening of shrub willow (Salix spp.) for arsenic tolerance and uptake. Int J Phytoremediat, 10(6):515-528. 


[33] Rockwood, D.L., Naidu, C.V., Carter, D.R., 2004. Short-rotation woody crops and phytoremediation: opportunities for agroforestry?. Agroforest Syst, 61-62(1-3):51-63. 


[34] Sahi, S.V., Israr, M., Srivastava, A.K., 2007. Accumulation, speciation and cellular localization of copper in Sesbania drummondiiChemosphere, 67(11):2257-2266. 


[35] Salemaa, M., Monni, S., 2003. Copper resistance of the evergreen dwarf shrub Arctostaphylos uva-ursi: an experimental exposure. Environ Pollut, 126(3):435-443. 


[36] Tanhan, P., Kruatrachue, M., Pokethitiyook, P., 2007. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere, 68(2):323-329. 


[37] Turchi, A., Tamantini, I., Camussi, A.M., 2012. Expression of a metallothionein A1 gene of Pisum sativum in white poplar enhances tolerance and accumulation of zinc and copper. Plant Sci, 183:50-56. 


[38] Vangronsveld, J., Herzig, R., Weyens, N., 2009. Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res, 16(7):765-794. 


[39] Wang, Y., Greger, M., 2004. Clonal differences in mercury tolerance, accumulation, and distribution in willow. J Environ Qual, 33(5):1779-1785. 


[40] Watson, C., Pulford, I.D., Riddell-Black, D., 1999. Heavy metal toxicity responses of two willow (Salix) varieties grown hydroponically: development of a tolerance screening test. Environ Geochem Health, 21(4):359-364. 


[41] Watson, C., Pulford, I.D., Riddell-Black, D., 2003. Development of a hydroponic screening technique to assess heavy metal resistance in willow (Salix). Int J Phytoremediat, 5(4):333-349. 


[42] Weng, G., Wu, L., Wang, Z., 2005. Copper uptake by four Elsholtzia ecotypes supplied with varying levels of copper in solution culture. Environ Int, 31(6):880-884. 


[43] Wieshammer, G., Unterbrunner, R., Garca, T.B., 2007. Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleriPlant Soil, 298(1-2):255-264. 


[44] Xing, Y., Peng, H., Li, X., 2012. Extraction and isolation of the salidroside-type metabolite from zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 13(10):839-845. 


[45] Yan, Y.P., He, J.Y., Zhu, C., 2006. Accumulation of copper in brown rice and effect of copper on rice growth and grain yield in different rice cultivars. Chemosphere, 65(10):1690-1696. 


[46] Zacchini, M., Pietrini, F., Mugnozza, G.S., 2009. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut, 197(1-4):23-34. 


[47] Zalesny, J.A., Zalesny, R.S., Wiese, A.H., 2007. Choosing tree genotypes for phytoremediation of landfill leachate using phyto-recurrent selection. Int J Phytoremediat, 9(6):513-530. 


[48] Zalesny, R.S., Bauer, E.O., 2007. Evaluation of Populus and Salix continuously irrigated with landfill leachate I. genotype-specific elemental phytoremediation. Int J Phytoremediat, 9(4):281-306. 


[49] Zalesny, R.S., Bauer, E.O., 2007. Selecting and utilizing Populus and Salix for landfill covers: implications for leachate irrigation. Int J Phytoremediat, 9(6):497-511. 


[50] Zhivotovsky, O.P., Kuzovkina, J.A., Schulthess, C.P., 2010. Hydroponic screening of willows (Salix L.) for lead tolerance and accumulation. Int J Phytoremediat, 13(1):75-94. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE