Full Text:   <3313>

Summary:  <2176>

CLC number: TP273

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-02-19

Cited: 3

Clicked: 8779

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.3 P.211-222

http://doi.org/10.1631/jzus.C1300266


Robust synchronization of chaotic systems using sliding mode and feedback control


Author(s):  Li-li Li, Ying Liu, Qi-guo Yao

Affiliation(s):  School of Naval Architecture and Ocean Engineering, Zhejiang Ocean University, Zhoushan 316000, China; more

Corresponding email(s):   64452300@qq.com, yingliu@zju.edu.cn, yaoqiguo@163.com

Key Words:  Chaos synchronization, Sliding mode, Feedback control


Li-li Li, Ying Liu, Qi-guo Yao. Robust synchronization of chaotic systems using sliding mode and feedback control[J]. Journal of Zhejiang University Science C, 2014, 15(3): 211-222.

@article{title="Robust synchronization of chaotic systems using sliding mode and feedback control",
author="Li-li Li, Ying Liu, Qi-guo Yao",
journal="Journal of Zhejiang University Science C",
volume="15",
number="3",
pages="211-222",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1300266"
}

%0 Journal Article
%T Robust synchronization of chaotic systems using sliding mode and feedback control
%A Li-li Li
%A Ying Liu
%A Qi-guo Yao
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 3
%P 211-222
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1300266

TY - JOUR
T1 - Robust synchronization of chaotic systems using sliding mode and feedback control
A1 - Li-li Li
A1 - Ying Liu
A1 - Qi-guo Yao
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 3
SP - 211
EP - 222
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1300266


Abstract: 
We propose a robust scheme to achieve the synchronization of chaotic systems with modeling mismatches and parametric variations. The proposed algorithm combines high-order sliding mode and feedback control. The sliding mode is used to estimate the synchronization error between the master and the slave as well as its time derivatives, while feedback control is used to drive the slave track the master. The stability of the proposed design is proved theoretically, and its performance is verified by some numerical simulations. Compared with some existing synchronization algorithms, the proposed algorithm shows faster convergence and stronger robustness to system uncertainties.

基于滑模和反馈控制的鲁棒混沌系统同步

研究目的:混沌同步是近年非线性系统研究热点,在许多方面具有重要应用。实际系统往往存在一定的不确定性,如系统模型以及系统参数的不匹配性等,严重影响了同步性能。本文提出一种鲁棒混沌同步方法,以实现带有一定不确定性的混沌系统的同步。
创新要点:将高阶滑模控制和反馈控制有效结合,设计了一种鲁棒的混沌同步控制策略。
方法提亮:该方法综合了滑模控制和反馈控制两方面优势,具有鲁棒性强、抗系统模型以及参数不匹配性好、收敛速度快、同步误差小的特点,因而特别适用于实际工程系统。
重要结论:理论分析证明了该方法的稳定性。通过和已有方法比较,数值仿真实验进一步验证了该方法的有效性。

关键词:混沌同步;滑模控制;反馈控制

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Besancon, G., 2000. Remarks on nonlinear adaptive observer design. Syst. Contr. Lett., 41(4):271-280.

[2]Bowong, S., 2004. Stability analysis for the synchronization of chaotic systems with different order: application to secure communications. Phys. Lett. A, 326(1-2):102-113.

[3]Chen, M., Kurths, J., 2007. Chaos synchronization and parameter estimation from a scalar output signal. Phys. Rev. E, 76(2):027203.

[4]Collins, J.J., Stewart, I.N., 1993. Coupled nonlinear oscillators and the symmetries of animal gaits. J. Nonl. Sci., 3(1):349-392.

[5]Feki, M., 2003. An adaptive chaos synchronization scheme applied to secure communication. Chaos Sol. Fract., 18(1):141-148.

[6]Femat, R., Solis-Perales, G., 2008. Robust Synchronization of Chaotic Systems via Feedback. Springer.

[7]Femat, R., Alvarez-Ramirez, J., Castillo-Toledo, B., et al., 1999. On robust chaos suppression in a class of nonlinear oscillators: application to Chua's circuit. IEEE Trans. Circ. Syst. I, 46(9):1150-1152.

[8]Femat, R., Alvarez-Ramirez, J., Fernandez-Anaya, G., 2000. Adaptive synchronization of high-order chaotic systems: a feedback with low-order parametrization. Phys. D, 139(3-4):231-246.

[9]Femat, R., Ortiz, R.J., Perales, G.S., 2001. An adaptive chaos synchronization scheme applied to secure communication scheme via robust asymptotic feedback. IEEE Trans. Circ. Syst. I, 48(10):1161-1169.

[10]Freitas, U.S., Macau, E.E.N., Grebogi, C., 2005. Using geometric control and chaotic synchronization to estimate an unknown model parameter. Phys. Rev. E, 71(4):047203.

[11]Grassi, G., Mascoio, S., 1999. Synchronizing hyperchaotic systems by observer design. IEEE Trans. Circ. Syst. II, 46(4):478-483.

[12]Haefner, J.W., 2005. Modeling Biological Systems: Principles and Applications. Springer, New York, USA.

[13]Han, J.Q., 1995. The extended state observer of a class of uncertain systems. Contr. & Dec., 110(1):85-88 (in Chinese).

[14]Isidori, A, 1989. Nonlinear Control System. Springer-Verlag, Berlin, Germany.

[15]Karimi, H.R., 2011. Robust synchronization and fault detection of uncertain master-slave systems with mixed time-varying delays and nonlinear perturbations. Int. J. Contr. Automat. Syst., 9(4):671-680.

[16]Karimi, H.R., 2012. A sliding mode approach to H synchronization of master-slave time-delay systems with Markovian jumping parameters and nonlinear uncertainties. J. Franklin Inst., 349(4):1480-1496.

[17]Karimi, H.R., Gao, H., 2010. New delay-dependent exponential H synchronization for uncertain neural networks with mixed time-delays. IEEE Trans. Syst. Man Cybern. Part B, 40(1):173-185.

[18]Kocarev, L., Parlitz, U., 1995. General approach for chaotic synchronization with applications to communication. Phys. Rev. Lett., 74(25):5028-5031.

[19]Levant, A., 2003. Higher-order sliding modes, differentiation and output-feedback control. Int. J. Contr., 76(9-10):924-941.

[20]Levant, A., Pavlov, Y., 2008. Generalized homogeneous quasi-continuous controllers. Int. J. Robust Nonl. Contr., 18(4-5):385-398.

[21]Li, X.R., Zhao, L.Y., Zhao, G.Z., 2005. Sliding mode control for synchronization of chaotic systems with structure or parameter mismatching. J. Zhejiang Univ.-Sci., 6(6):571-576.

[22]Liu, Y., Tang, W., 2009. Adaptive synchronization of chaotic systems and its uses in cryptanalysis. In: Recent Advances in Nonlinear Dynamics and Synchronization (NDS-1), Theory and Applications. Springer, 254:307-346.

[23]Liu, Y., Tang, W., Kocarev, L., 2008. An adaptive observer design for the auto-synchronization of Lorenz system. Int. J. Bifurcat. Chaos, 18(8):2415-2423.

[24]Mao, Y., 2009. Adaptive Synchronization and Its Use in Biological Neural Network Modeling. MS Thesis, City University of Hong Kong, Hong Kong, China.

[25]Mao, Y., Tang, W., Liu, Y., et al., 2009. Identification of biological neurons using adaptive observers. Cogn. Process., 10(Suppl 1):41-53.

[26]Nijmeijer, H., Mareels, I.M.Y., 1997. An observer looks at synchronization. IEEE Trans. Circ. Syst. I, 44(10):882-890.

[27]Pecora, L.M., Carroll, T.L., 1990. Synchronization in chaotic systems. Phys. Rev. Lett., 64(8):821-824.

[28]Pecora, L.M., Carroll, T.L., 1991. Driving systems with chaotic signals. Phys. Rev. A, 44(4):2374-2383.

[29]Rodriguez, A., de Leon, J., Fridman, L., 2008. Quasi-continuous high-order sliding-mode controllers for reduced-order chaos synchronization. Int. J. Nonl. Mech., 43(9):948-961.

[30]Trentelman, H.L., Takaba, K., Monshizadeh, N., 2013. Robust synchronization of uncertain linear multi-agent systems. IEEE Trans. Automat. Contr., 58(6):1511-1523.

[31]Wang, B., Shi, P., Karimi, H.R., et al., 2012. H robust controller design for the synchronization of master-slave chaotic systems with disturbance input. Model. Identif. Contr., 33(1):27-34.

[32]Wang, Y., Chik, D.T.M., Wang, Z.D., 2000. Coherence resonance and noise-induced synchronization in globally coupled Hodgkin-Huxley neurons. Phys. Rev. E, 61(1):740-746.

[33]Wittmeier, S., Song, G., Duffin, J., et al., 2008. Pacemakers handshake synchronization mechanism of mammalian respiratory rhythmogenesis. PNAS, 105(46):18000-18005.

[34]Xu, J., Min, L., Chen, G., 2004. A chaotic communication scheme based on generalized synchronization and hash functions. Chin. Phys. Lett., 21(8):1445-1448.

[35]Yang, T., Shao, H.H., 2002. Synchronizing chaotic dynamics with uncertainties based on a sliding mode control design. Phys. Rev. E, 65(4):046210.

[36]Youssef, T., Chadli, M., Karimi, H.R., et al., 2013. Chaos synchronization based on unknown input proportional multiple-integral fuzzy observer. Abstr. Appl. Anal., 2013:670878.

[37]Yu, D., Parlitz, U., 2008. Estimating parameters by autosynchronization with dynamics restrictions. Phys. Rev. E, 77(6 Pt 2):066221.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE