Full Text:   <1800>

CLC number: 

On-line Access: 2021-01-04

Received: 2020-08-23

Revision Accepted: 2020-10-24

Crosschecked: 0000-00-00

Cited: 0

Clicked: 2627

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Bio-Design and Manufacturing  2021 Vol.4 No.2 P.344-378

http://doi.org/10.1007/s42242-020-00109-0


3D printing of tissue engineering scaffolds: a focus on vascular regeneration


Author(s):  Pengju Wang, Yazhou Sun, Xiaoquan Shi, Huixing Shen, Haohao Ning & Haitao Liu

Affiliation(s):  Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China

Corresponding email(s):   hthit@hit.edu.cn

Key Words:  Tissue engineering, 3D printing, Vascular scaffolds, Print materials, Modeling methods


Share this article to: More

Pengju Wang, Yazhou Sun, Xiaoquan Shi, Huixing Shen, Haohao Ning & Haitao Liu . 3D printing of tissue engineering scaffolds: a focus on vascular regeneration[J]. Journal of Zhejiang University Science D, 2021, 4(2): 344-378.

@article{title="3D printing of tissue engineering scaffolds: a focus on vascular regeneration",
author="Pengju Wang, Yazhou Sun, Xiaoquan Shi, Huixing Shen, Haohao Ning & Haitao Liu ",
journal="Journal of Zhejiang University Science D",
volume="4",
number="2",
pages="344-378",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1007/s42242-020-00109-0"
}

%0 Journal Article
%T 3D printing of tissue engineering scaffolds: a focus on vascular regeneration
%A Pengju Wang
%A Yazhou Sun
%A Xiaoquan Shi
%A Huixing Shen
%A Haohao Ning & Haitao Liu
%J Journal of Zhejiang University SCIENCE D
%V 4
%N 2
%P 344-378
%@ 1869-1951
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1007/s42242-020-00109-0

TY - JOUR
T1 - 3D printing of tissue engineering scaffolds: a focus on vascular regeneration
A1 - Pengju Wang
A1 - Yazhou Sun
A1 - Xiaoquan Shi
A1 - Huixing Shen
A1 - Haohao Ning & Haitao Liu
J0 - Journal of Zhejiang University Science D
VL - 4
IS - 2
SP - 344
EP - 378
%@ 1869-1951
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1007/s42242-020-00109-0


Abstract: 
tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine. Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels. Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues. The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering. Recent advances in 3D printing have facilitated fabrication of vascular scaffolds, contributing to broad prospects for tissue vascularization. This review presents state of the art on modeling methods, print materials and preparation processes for fabrication of vascular scaffolds, and discusses the advantages and application fields of each method. Specially, significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized. print materials and preparation processes are discussed in detail. And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting, electrospinning, and Lego-like construction. And related studies are exemplified. Transformation of vascular scaffolds to clinical application is discussed. Also, four trends of 3D printing of tissue engineering vascular scaffolds are presented, including machine learning, near-infrared photopolymerization, 4D printing, and combination of self-assembly and 3D printing-based methods.

哈工大刘海涛等 | 组织工程支架的3D打印:聚焦血管再生领域

本综述论文概述了3D打印支架技术在血管再生领域的研究进展。利用3D打印支架技术进行血管再生的主题一直是研究热点且极具重要性,然而现有报道中关于这方面研究的系统性总结相对缺乏。本文从5个方面进行了阐述:1)面向血管再生的组织工程支架的意义和重要性;2)血管支架的三维建模方法;3)血管支架中常用的3D打印材料;4)血管支架制造中常见的3D打印技术;5)血管支架的临床转化。此外,鉴于传统制造技术的优势,论文还讨论了血管支架制备中常涉及的其它技术,包括铸造、静电纺丝及乐高积木式构建。

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE