Full Text:   <454>

CLC number: 

On-line Access: 2021-07-17

Received: 2021-03-16

Revision Accepted: 2021-06-09

Crosschecked: 0000-00-00

Cited: 0

Clicked: 363

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Bio-Design and Manufacturing  2022 Vol.5 No.1 P.174-188


Bioinspired soft actuators with highly ordered skeletal muscle structures

Author(s):  Yingjie Wang, Chunbao Liu, Luquan Ren & Lei Ren

Affiliation(s):  School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022, China; more

Corresponding email(s):   liuchunbao@jlu.edu.cn, lei.ren@manchester.ac.uk

Key Words:  Bioinspired, Soft robotics, Actuator, Skeletal muscle

Share this article to: More

Yingjie Wang, Chunbao Liu, Luquan Ren & Lei Ren . Bioinspired soft actuators with highly ordered skeletal muscle structures[J]. Journal of Zhejiang University Science D, 2022, 5(1): 174-188.

@article{title="Bioinspired soft actuators with highly ordered skeletal muscle structures",
author="Yingjie Wang, Chunbao Liu, Luquan Ren & Lei Ren ",
journal="Journal of Zhejiang University Science D",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Bioinspired soft actuators with highly ordered skeletal muscle structures
%A Yingjie Wang
%A Chunbao Liu
%A Luquan Ren & Lei Ren
%J Journal of Zhejiang University SCIENCE D
%V 5
%N 1
%P 174-188
%@ 1869-1951
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1007/s42242-021-00148-1

T1 - Bioinspired soft actuators with highly ordered skeletal muscle structures
A1 - Yingjie Wang
A1 - Chunbao Liu
A1 - Luquan Ren & Lei Ren
J0 - Journal of Zhejiang University Science D
VL - 5
IS - 1
SP - 174
EP - 188
%@ 1869-1951
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1007/s42242-021-00148-1

Mammals such as humans develop skeletal muscles composed of muscle fibers and connective tissue, which have mechanical properties that enable power output with three-dimensional motion when activated. Artificial muscle-like actuators developed to date, such as the McKibben artificial muscle, often focus sole contractile elements and have rarely addressed the contribution of flexible connective tissue that forms an integral part of the structure and morphology of biological muscle. Herein, we present a class of pneumatic muscle-like actuators, termed highly mimetic skeletal muscle (HimiSK) actuator, that consist of parallelly arranged contractile units in a flexible matrix inspired by ultrasonic measurements on skeletal muscle. The contractile units act as a muscle fiber to produce active shortening force, and the flexible matrix functions as connective tissue to generate passive deformation. The application of positive pressure to the contractile units can produce a linear contraction and force. In this actuator, we assign different flexible materials as contractile units and a flexible matrix, thus forming five mold actuators. These actuators feature three-dimensional motion on activation and present both intrinsic force–velocity and force–length characteristics that closely resebmle those of a biological muscle. High output and tetanic force produced by harder contractile units improve the maximum output force by up to about 41.3% and the tetanic force by up to about 168%. Moreover, high displacement and velocity can be generated by a softer flexible matrix, with the improvement of maximum displacement up to about 33.3% and velocity up to about 73%. The results demonstrate that contractile units play a crucial role in force generation, while the flexible matrix has a significant impact on force transmission and deformation; the final force, velocity, displacement, and three-dimensional motion results from the interplay of contractile units, fluid and flexible matrix. Our approach introduces a model of the presented HimiSK actuators to better understand the mechanical behaviors, force generation, and transmission in bioinspired soft actuators, and highlights the importance of using flexible connective tissue to form a structure and configuration similar to that of skeletal muscle, which has potential usefulness in the design of effective artificial muscle.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE