Full Text:   <3274>

Summary:  <2104>

CLC number: TN929.5

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-03-14

Cited: 1

Clicked: 8287

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Gao-feng Pan

http://orcid.org/0000-0003-1008-5717

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.4 P.578-590

http://doi.org/10.1631/FITEE.1500430


Ergodic secrecy capacity of MRC/SC in single-input multiple-output wiretap systems with imperfect channel state information


Author(s):  Hui Zhao, You-yu Tan, Gao-feng Pan, Yun-fei Chen

Affiliation(s):  School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China; more

Corresponding email(s):   gfpan@swu.edu.cn

Key Words:  Ergodic secrecy capacity (ESC), Maximal ratio combining (MRC), Weighting errors, Physical layer security, Selection combining (SC), Single-input multiple-output (SIMO)


Share this article to: More <<< Previous Article|


Abstract: 
This paper investigates the secrecy performance of maximal ratio combining (MRC) and selection combining (SC) with imperfect channel state information (CSI) in the physical layer. In a single-input multiple-output (SIMO) wiretap channel, a source transmits confidential messages to the destination equipped with M antennas using the MRC/SC scheme to process the received multiple signals. An eavesdropper equipped with N antennas also adopts the MRC/SC scheme to promote successful eavesdropping. We derive the exact and asymptotic closed-form expressions for the ergodic secrecy capacity (ESC) in two cases: (1) MRC with weighting errors, and (2) SC with outdated CSI. Moreover, two important indicators, namely high signal-to-noise ratio (SNR) slope and high SNR power offset, which govern ESC at the high SNR region, are derived. Finally, simulations are conducted to validate the accuracy of our proposed analytical models. Results indicate that ESC rises with the increase of the number of antennas and the received SNR at the destination, and fades with the increase of those at the eavesdropper. Another finding is that the high SNR slope is constant, while the high SNR power offset is correlated with the number of antennas at both the destination and the eavesdropper.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE