CLC number: TN929.5
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-03-14
Cited: 1
Clicked: 7639
Hui Zhao, You-yu Tan, Gao-feng Pan, Yun-fei Chen. Ergodic secrecy capacity of MRC/SC in single-input multiple-output wiretap systems with imperfect channel state information[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 578-590.
@article{title="Ergodic secrecy capacity of MRC/SC in single-input multiple-output wiretap systems with imperfect channel state information",
author="Hui Zhao, You-yu Tan, Gao-feng Pan, Yun-fei Chen",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="4",
pages="578-590",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500430"
}
%0 Journal Article
%T Ergodic secrecy capacity of MRC/SC in single-input multiple-output wiretap systems with imperfect channel state information
%A Hui Zhao
%A You-yu Tan
%A Gao-feng Pan
%A Yun-fei Chen
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 4
%P 578-590
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500430
TY - JOUR
T1 - Ergodic secrecy capacity of MRC/SC in single-input multiple-output wiretap systems with imperfect channel state information
A1 - Hui Zhao
A1 - You-yu Tan
A1 - Gao-feng Pan
A1 - Yun-fei Chen
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 4
SP - 578
EP - 590
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500430
Abstract: This paper investigates the secrecy performance of maximal ratio combining (MRC) and selection combining (SC) with imperfect channel state information (CSI) in the physical layer. In a single-input multiple-output (SIMO) wiretap channel, a source transmits confidential messages to the destination equipped with M antennas using the MRC/SC scheme to process the received multiple signals. An eavesdropper equipped with N antennas also adopts the MRC/SC scheme to promote successful eavesdropping. We derive the exact and asymptotic closed-form expressions for the ergodic secrecy capacity (ESC) in two cases: (1) MRC with weighting errors, and (2) SC with outdated CSI. Moreover, two important indicators, namely high signal-to-noise ratio (SNR) slope and high SNR power offset, which govern ESC at the high SNR region, are derived. Finally, simulations are conducted to validate the accuracy of our proposed analytical models. Results indicate that ESC rises with the increase of the number of antennas and the received SNR at the destination, and fades with the increase of those at the eavesdropper. Another finding is that the high SNR slope is constant, while the high SNR power offset is correlated with the number of antennas at both the destination and the eavesdropper.
This paper investigated the secrecy capacity of an SIMO system with imperfect CSI for both MRC and SC schemes. The analysis of the ergodic secrecy capacity was performed for two cases: 1) MRC with weighting errors and 2) SC with outdated CSI. Simulations were provided to validate their analysis and offer further insights.
[1]Alouini, M.S., Goldsmith, A.J., 1999. Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques. IEEE Trans. Veh. Technol., 48(4):1165-1181.
[2]Alves, H., DemoSouza, R., Debbah, M., et al., 2012. Performance of transmit antenna selection physical layer security schemes. IEEE Signal Process. Lett., 19(6):hbox372-375.
[3]Elkashlan, M., Wang, L., Duong, T.Q., et al., 2015. On the security of cognitive radio networks. IEEE Trans. Veh. Technol., 64(8):3790-3795.
[4]Ferdinand, N.S., da Costa, D.B., Latva-aho, M., 2013. Effects of outdated CSI on the secrecy performance of MISO wiretap channels with transmit antenna selection. IEEE Commun. Lett., 17(5):864-867.
[5]Gans, M.J., 1971. The effect of Gaussian error in maximal ratio combiners. IEEE Trans. Commun. Technol., 19(4):492-500.
[6]Gradshteyn, I.S., Ryzhik, I.M., 2007. Table of Integrals, Series, and Products (7th Ed.). Academic Press, Salt Lake City, USA.
[7]He, F., Man, H., Wang, W., 2011. Maximal ratio diversity combining enhanced security. IEEE Commun. Lett., 15(5):509-511.
[8]Hu, Y., Tao, Y., 2015. Secrecy outage on transmit antenna selection with weighting errors at maximal-ratio combiners. IEEE Commun. Lett., 19(4):597-600.
[9]Janarthanan, S., Bhaskar, V., 2013. Capacity analysis of Rayleigh fading channels in low signal-to-noise ratio regime for maximal ratio combining diversity because of combining errors. IET Commun., 7(8):745-754.
[10]Khatalin, S., Fonseka, J.P., 2006. On the channel capacity in Rician and Hoyt fading environments with MRC diversity. IEEE Trans. Veh. Technol., 55(1):137-141.
[11]Khuong, H.V., Sofotasios, P.C., 2013. Exact bit-error-rate analysis of underlay decode-and-forward multi-hop cognitive networks with estimation errors. IET Commun., 7(18):2122-2132.
[12]Lee, W.C.Y., 1990. Estimate of channel capacity in Rayleigh fading environment. IEEE Trans. Veh. Technol., 39(3):187-189.
[13]Lei, H., Gao, C., Guo, Y., et al., 2015. On physical layer security over generalized Gamma fading channels. IEEE Commun. Lett., 19(7):1257-1260.
[14]Lei, H., Zhang, H., Ansari, I.S., et al., 2016. Performance analysis of physical layer security over generalized-K fading channels using a mixture gamma distribution. IEEE Commun. Lett., 20(2):408-411.
[15]Liu, H., Zhao, H., Jiang, H., et al., 2016. Physical-layer secrecy outage of spectrum sharing CR systems over fading channels. Sci. China Inf. Sci., 59(4):102308.
[16]Liu, Y., Wang, L., Duy, T.T., et al., 2015. Relay selection for security enhancement in cognitive relay networks. IEEE Wirel. Commun. Lett., 4(1):46-49.
[17]Liu, Y., Wang, L., Zaidi, R., et al., 2016. Secure D2D communication in large-scale cognitive cellular networks: a wireless power transfer model. IEEE Trans. Commun., 64(1):329-342.
[18]Pan, G., Tang, C., Li, T., et al., 2015. Secrecy performance analysis for SIMO simultaneous wireless information and power transfer systems. IEEE Trans. Commun., 63(9):3423-3433.
[19]Pan, G., Tang, C., Zhang, X., et al., 2016. Physical layer security over non-small scale fading channels. IEEE Trans. Veh. Technol., 65(3):1326-1339.
[20]Rezki, Z., Khisti, A., Alouini, M.S., 2014. On the secrecy capacity of the wiretap channel with imperfect main channel estimation. IEEE Trans. Commun., 62(10):3652-3664.
[21]Shiu, Y.S., Chang, S.Y., Wu, H.C., et al., 2011. Physical layer security in wireless networks: a tutorial. IEEE Wirel. Commun. Mag., 18(2):66-74.
[22]Shrestha, A.P., Kwark, K.S., 2014. On maximal ratio diversity with weighting errors for physical layer security. IEEE Commun. Lett., 18(4):580-583.
[23]Simon, M.K., Alouini, M.S., 2005. Digital Communications over Fading Channels (2nd Ed.). John Wiley, Hoboken, USA.
[24]Sun, X., Wang, J., Xu, W., et al., 2012. Performance of secure communications over correlated fading channels. IEEE Signal Process. Lett., 19(8):479-482.
[25]Tomiuk, B.R., Beaulieu, N.C., Abu-Dayya, A.A., 1999. General forms for maximal ratio diversity with weighting errors. IEEE Trans. Commun., 47(4):488-492.
[26]Wang, L., Yang, N., Elkashlan, M., et al., 2014a. Physical layer security of maximal ratio combining in two-wave diffuse power fading channels. IEEE Trans. Inf. Foren. Sec., 9(2):247-258.
[27]Wang, L., Elkashlan, M., Huang, J., et al., 2014b. Secure transmission with antenna selection in MIMO Nakagami-m fading channels. IEEE Trans. Wirel. Commun., 13(11):6054-6067.
[28]Yang, N., Yeoh, P.L., Elkashlan, M., et al., 2013a. MIMO wiretap channels: secure transmission using transmit antenna selection and receive generalized selection combining. IEEE Commun. Lett., 17(9):1754-1757.
[29]Yang, N., Suraweera, H.A., Collings, I.B., et al., 2013b. Physical layer security of TAS/MRC with antenna correlation. IEEE Trans. Inf. Foren. Sec., 8(1):hbox254-259.
[30]Yang, N., Yeoh, P.L., Elkashlan, M., et al., 2013c. Transmit antenna selection for security enhancement in MIMO wiretap hboxchannels. IEEE Trans. Commun., 61(1):hbox144-154.
[31]Yang, N., Wang, L., Geraci, G., et al., 2015. Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun. Mag., 53(4):20-27.
[32]Zhang, X., Pan, G., Tang, C., et al., 2014. Performance analysis of physical layer security over independent/correlated log-normal fading channels. Telecommunication Networks and Applications Conf., p.23-27.
[33]Zhao, H., Pan, G., 2016. The analysis on secure communications for DF and RF relaying SIMO system with Gauss errors. Sci. China Inf. Sci., 46(3):350-360.
Open peer comments: Debate/Discuss/Question/Opinion
<1>