Full Text:   <2804>

Summary:  <2299>

CLC number: TN82

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2020-01-06

Cited: 0

Clicked: 6282

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Kai-lai Wu

https://orcid.org/0000-0001-6836-0545

Yuan Yao

https://orcid.org/0000-0003-4408-3031

Xiao-he Cheng

https://orcid.org/0000-0001-9420-778X

Xiao-dong Chen

https://orcid.org/0000-0002-1972-3271

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.1 P.128-143

http://doi.org/10.1631/FITEE.1900461


Analysis and design of novel wideband and high efficiency millimeter-wave antenna arrays for 60-GHz applications


Author(s):  Kai-lai Wu, Yuan Yao, Xiao-he Cheng, Jun-sheng Yu, Tao Yu, Xiao-dong Chen

Affiliation(s):  Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China; more

Corresponding email(s):   2018010115, yaoy, xiaohec, jsyu@bupt.edu.cn, yutao@mobile.ee.titech.ac.jp, xiaodong.chen@qmul.ac.uk

Key Words:  60 GHz, Antenna array, Linearly polarized, Circularly polarized, Millimeter-wave


Kai-lai Wu, Yuan Yao, Xiao-he Cheng, Jun-sheng Yu, Tao Yu, Xiao-dong Chen. Analysis and design of novel wideband and high efficiency millimeter-wave antenna arrays for 60-GHz applications[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(1): 128-143.

@article{title="Analysis and design of novel wideband and high efficiency millimeter-wave antenna arrays for 60-GHz applications",
author="Kai-lai Wu, Yuan Yao, Xiao-he Cheng, Jun-sheng Yu, Tao Yu, Xiao-dong Chen",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="1",
pages="128-143",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900461"
}

%0 Journal Article
%T Analysis and design of novel wideband and high efficiency millimeter-wave antenna arrays for 60-GHz applications
%A Kai-lai Wu
%A Yuan Yao
%A Xiao-he Cheng
%A Jun-sheng Yu
%A Tao Yu
%A Xiao-dong Chen
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 1
%P 128-143
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900461

TY - JOUR
T1 - Analysis and design of novel wideband and high efficiency millimeter-wave antenna arrays for 60-GHz applications
A1 - Kai-lai Wu
A1 - Yuan Yao
A1 - Xiao-he Cheng
A1 - Jun-sheng Yu
A1 - Tao Yu
A1 - Xiao-dong Chen
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 1
SP - 128
EP - 143
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900461


Abstract: 
A type of millimeter-wave antenna array with flexible design is proposed for a variety of applications at 60 GHz. The antenna array can be adjusted to be linearly or circularly polarized by simply changing the radiation part of the antenna array. High gain, wideband, and high radiation efficiency characteristics can be achieved by adopting a low insertion loss feeding network and broadband antenna elements. For the linearly polarized antenna array, simulation results show that the impedance bandwidth of the 2×2 antenna subarray reaches 21.6%, while the maximum gain achieves 15.1 dBi and has a fluctuation of less than 0.4 dBi within the working bandwidth. Simulation results of the 8×8 linearly polarized antenna array show a bandwidth of 21.6% and a gain of (26.1±1) dBi with an antenna efficiency of more than 80%. For the 8×8 circularly polarized antenna array, simulation results show that an impedance bandwidth of 18.2% and an axial ratio (AR) bandwidth of 13.3% are obtained. Gain and efficiency of up to 27.6 dBi and 80% are achieved, respectively. A prototype of antenna array is fabricated, and results are compared and analyzed.

适用于60 GHz应用的新型宽带高效毫米波天线阵列分析和设计

邬开来1,姚远1,程潇鹤1,俞俊生1,于韬2,陈晓东3
1北京邮电大学电子工程学院安全生产智能监控北京市重点实验室,中国北京市,100876
2东京工业大学电气与电子工程系,日本东京市,152-8552
3伦敦大学玛丽女王学院电子工程与计算机科学学院,英国伦敦市,E14NS

摘要:提出一种适用于60 GHz应用且具有灵活设计的毫米波天线阵列。通过简单地改变天线阵列的辐射部分,可将天线阵列调整为线极化或圆极化。通过采用低插入损耗馈电网络和宽带天线单元,可实现高增益、宽带和高辐射效率特性。对于线性极化天线阵列,仿真结果表明,2×2天线子阵列的阻抗带宽达到21.6%,最大增益达到15.1 dBi,并且在工作带宽内波动小于0.4 dBi。对于8×8线极化天线阵列,仿真结果显示带宽为21.6%,增益为(26.1±1) dBi,天线效率超过80%。对于8×8圆极化天线阵列,仿真结果表明,阻抗带宽为18.2%,轴比(AR)带宽为13.3%。增益和效率分别达到27.6 dBi和80%。同时进行了天线阵列实物加工测试,并比较和分析结果。

关键词:60 GHz;天线阵列;线极化;圆极化;毫米波

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Akbari M, Farahbakhsh A, Sebak AR, 2018. Ridge gap waveguide multilevel sequential feeding network for high-gain circularly polarized array antenna. IEEE Trans Antenn Propag, 67(1):251-259.

[2]Du M, Dong YL, Xu J, et al., 2017. 35-GHz wideband circularly polarized patch array on LTCC. IEEE Trans Antenn Propag, 65(6):3235-3240.

[3]Ferrando-Rocher M, Herranz-Herruzo JI, Valero-Nogueira A, et al., 2018. Single-layer circularly-polarized Ka-band antenna using gap waveguide technology. IEEE Trans Antenn Propag, 66(8):3837-3845.

[4]Hao ZC, Li BW, 2017. Developing wideband planar millimeter-wave array antenna using compact magneto- electric dipoles. IEEE Antenn Wirel Propag Lett, 16: 2102-2105.

[5]Irie H, Hirokawa J, 2017. Perpendicular-corporate feed in three-layered parallel-plate radiating-slot array. IEEE Trans Antenn Propag, 65(11):5829-5836.

[6]Kildal PS, Alfonso E, Valero-Nogueira A, et al., 2008. Local metamaterial-based waveguides in gaps between parallel metal plates. IEEE Antenn Wirel Propag Lett, 8:84-87.

[7]Lee B, Yoon Y, 2017. Low-profile, low-cost, broadband millimeter-wave antenna array for high-data-rate WPAN systems. IEEE Antenn Wirel Propag Lett, 16:1957-1960.

[8]Li YJ, Luk KM, 2016. A 60-GHz wideband circularly polarized aperture-coupled magneto-electric dipole antenna array. IEEE Trans Antenn Propag, 64(4):1325-1333.

[9]Liu JL, Vosoogh A, Zaman AU, et al., 2017. Design and fabrication of a high-gain 60-GHz cavity-backed slot antenna array fed by inverted microstrip gap waveguide. IEEE Trans Antenn Propag, 65(4):2117-2122.

[10]Liu JL, Vosoogh A, Zaman AU, et al., 2018. A slot array antenna with single-layered corporate-feed based on ridge gap waveguide in the 60 GHz band. IEEE Trans Antenn Propag, 67(3):1650-1658.

[11]Miura Y, Hirokawa J, Ando M, et al., 2011. Double-layer full-corporate-feed hollow-waveguide slot array antenna in the 60-GHz band. IEEE Trans Antenn Propag, 59(8):2844-2851.

[12]Parshin VV, Tretyakov MY, Shanin VN, et al., 2001. Modern technique for absorption investigation in atmosphere and condensed media in the MM wavelength range. 4th Int Kharkov Symp on Physics and Engineering of Millimeter and Sub-millimeter Waves, p.79-84.

[13]Rappaport TS, Murdock JN, Gutierrez F, 2011. State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc IEEE, 99(8):1390-1436.

[14]Rappaport TS, Sun S, Mayzus R, et al., 2013. Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access, 1:335-349.

[15]Tomura T, Miura Y, Zhang M, et al., 2012. A 45° linearly polarized hollow-waveguide corporate-feed slot array antenna in the 60-GHz band. IEEE Trans Antenn Propag, 60(8):3640-3646.

[16]Yamamoto T, Zhang M, Hirokawa J, et al., 2014. Wideband design of a circularly-polarized plate-laminated waveguide slot array antenna. Int Symp on Antennas and Propagation, p.13-14.

[17]Zaman AU, Kildal PS, 2016. Gap waveguides. In: Chen Z (Ed.), Handbook of Antenna Technologies. Springer, Singapore, p.3273-3347.

[18]Zarifi D, Farahbakhsh A, Zaman AU, et al., 2016. Design and fabrication of a high-gain 60-GHz corrugated slot antenna array with ridge gap waveguide distribution layer. IEEE Trans Antenn Propag, 64(7):2905-2913.

[19]Zarifi D, Farahbakhsh A, Zaman AU, 2017. A gap wave-guide-fed wideband patch antenna array for 60-GHz applications. IEEE Trans Antenn Propag, 65(9):4875-4879.

[20]Zhu JF, Li SF, Liao SW, et al., 2017. High-gain series-fed planar aperture antenna array. IEEE Antenn Wirel Propag Lett, 16:2750-2754.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE