CLC number: TN821
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-03-03
Cited: 0
Clicked: 5981
Citations: Bibtex RefMan EndNote GB/T7714
Zhong-bo Zhu, Wei-dong Hu, Tao Qin, Sheng Li, Xiao-jun Li, Jiang-jie Zeng, Xian-qi Lin, Leo P. Ligthart. A high-precision terahertz retrodirective antenna array with navigation signal at a different frequency[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(3): 377-383.
@article{title="A high-precision terahertz retrodirective antenna array with navigation signal at a different frequency",
author="Zhong-bo Zhu, Wei-dong Hu, Tao Qin, Sheng Li, Xiao-jun Li, Jiang-jie Zeng, Xian-qi Lin, Leo P. Ligthart",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="3",
pages="377-383",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900581"
}
%0 Journal Article
%T A high-precision terahertz retrodirective antenna array with navigation signal at a different frequency
%A Zhong-bo Zhu
%A Wei-dong Hu
%A Tao Qin
%A Sheng Li
%A Xiao-jun Li
%A Jiang-jie Zeng
%A Xian-qi Lin
%A Leo P. Ligthart
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 3
%P 377-383
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900581
TY - JOUR
T1 - A high-precision terahertz retrodirective antenna array with navigation signal at a different frequency
A1 - Zhong-bo Zhu
A1 - Wei-dong Hu
A1 - Tao Qin
A1 - Sheng Li
A1 - Xiao-jun Li
A1 - Jiang-jie Zeng
A1 - Xian-qi Lin
A1 - Leo P. Ligthart
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 3
SP - 377
EP - 383
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900581
Abstract: Future communications will provide higher transmission rates and higher operating frequencies. In addition, agile beam tracking will be an inevitable trend in technology development. The terahertz retrodirective antenna array proposed and discussed in this paper can be a better solution for agile beam tracking. The array receives a 40-GHz navigation signal and accurately retransmits a 120-GHz beam in the direction of the arrival wave. Simulation results indicate that the proposed array with a stacked sandwich structure has realized the tracking of the received wave. The scanning radiation pattern shows that the array gain is 23.87 dB at 19.9° when the incident angle is 20° with a relative error of only 0.5%, meaning that there is a lateral error of only 8.7 m at a transmission distance of 5 km.
[1]Balanis CA, 2016. Antenna Theory: Analysis and Design. John Wiley & Sons, Hoboken, USA.
[2]Chen L, Wang XH, Shi XW, et al., 2010. Design of a broadband frequency offset Van Atta array. PIER Lett, 13:161- 171.
[3]Hannan A, Hasan A, Tarar MA, 2017. Simplified design, simulation, and lab-environment measurement scheme for retro-directive antenna arrays. Microw Opt Technol Lett, 29:2890-2893.
[4]Hao ZC, Hong W, Chen JX, et al., 2005. Compact super-wide bandpass substrate integrated waveguide (SIW) filters. IEEE Trans Microw Theory Techn, 53(9):2968-2977.
[5]Jacobs SF, 1982. Experiments with retrodirective arrays. Opt Eng, 21(2):212281.
[6]Kokel SJ, 2014. Retrodirective Phase-lock Loop Controlled Phased Array Antenna for a Solar Power Satellite System. PhD Thesis, Texas A&M University, Texas, USA.
[7]Leong KMKH, Miyamoto RY, Itoh T, 2003a. Moving forward in retrodirective antenna arrays. IEEE Potent, 22(3):16- 21.
[8]Leong KMKH, Miyamoto RY, Itoh T, 2003b. Ongoing Retro- directive Array Research at UCLA. Technical Report SPS2002-08, University of California, Los Angeles, USA.
[9]Li Y, Jandhyala V, 2012. Design of retrodirective antenna arrays for short-range wireless power transmission. IEEE Trans Antenn Propag, 60(1):206-211.
[10]Outerelo DA, Alejos AV, Sanchez MG, et al., 2015. Microstrip antenna for 5G broadband communications: overview of design issues. Proc IEEE Int Symp on Antennas & Propagation & USNC/URSI National Radio Science Meeting, p.2443-2444.
[11]Roh W, Seol JY, Park J, et al., 2014. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun Mag, 52(2):106-113.
[12]Rosenworcel J, 2018. Remarks of Commissioner Jessica Rosenworcel Mobile World Congress Americas, Los Angeles, California, September 13, 2018.
[13]Samuel YL, 1990. Microwave Devices and Circuits. Prentice Hall, Englewood.
[14]van Atta LG, 1959. Electromagnetic Reflector. US Patent, 2 908 002.
[15]Zhu ZB, Hu WD, Lin XQ, et al., 2019. A sub-terahertz retro- directive antenna array for satellite tracking. Proc 44th Int Conf on Infrared, Millimeter, and Terahertz Waves, p.1-2.
Open peer comments: Debate/Discuss/Question/Opinion
<1>