CLC number: O436.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-08-18
Cited: 0
Clicked: 4976
Ri-hui Xiong, Xiao-qing Peng, Jiu-sheng Li. Graphene-metasurface for wide-incident-angle terahertz absorption[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(3): 334-340.
@article{title="Graphene-metasurface for wide-incident-angle terahertz absorption",
author="Ri-hui Xiong, Xiao-qing Peng, Jiu-sheng Li",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="3",
pages="334-340",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000079"
}
%0 Journal Article
%T Graphene-metasurface for wide-incident-angle terahertz absorption
%A Ri-hui Xiong
%A Xiao-qing Peng
%A Jiu-sheng Li
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 3
%P 334-340
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000079
TY - JOUR
T1 - Graphene-metasurface for wide-incident-angle terahertz absorption
A1 - Ri-hui Xiong
A1 - Xiao-qing Peng
A1 - Jiu-sheng Li
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 3
SP - 334
EP - 340
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000079
Abstract: We demonstrate a graphene-metasurface structure for tunable wide-incident-angle terahertz wave absorption, which involves depositing planar arrays of omega-shaped graphene patterns on a silicon dioxide substrate. We also discuss how the graphene Fermi-level layer and various substrates affect the absorption characteristics. The absorption of the proposed terahertz absorber is above 80% at an incident angle of 0°–60° in frequencies ranging from 0.82 to 2.0 THz. Our results will be very beneficial in the application of terahertz wave communications and biomedical imaging/sensing systems.
[1]Amin M, Farhat M, Bağcı H, 2013. An ultra-broadband multilayered graphene absorber. Opt Expr, 21(24):29938-29948.
[2]Bouchon P, Koechlin C, Pardo F, et al., 2012. Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas. Opt Lett, 37(6):1038-1040.
[3]Daraei OM, Goudarzi K, Bemani M, 2020. A tunable ultra-broadband terahertz absorber based on two layers of graphene ribbons. Opt Laser Technol, 122:105853.
[4]Esquius-Morote M, Gómez-Díaz JS, Perruisseau-Carrier J, 2014. Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Trans Terahertz Sci Technol, 4(1):116-122.
[5]He XY, Liu F, Lin FT, et al., 2019. Investigation of terahertz all-dielectric metamaterials. Opt Expr, 27(10):13831-13844.
[6]He XY, Lin FT, Liu F, et al., 2020a. Investigation of phonon scattering on the tunable mechanisms of terahertz graphene metamaterials. Nanomaterials, 10(1):39.
[7]He XY, Lin FT, Liu F, et al., 2020b. Tunable strontium titanate terahertz all-dielectric metamaterials. J Phys D, 53(15):155105.
[8]He YN, Zhang B, He T, et al., 2015. Optically-controlled metamaterial absorber based on hybrid structure. Opt Commun, 356:595-598.
[9]Hu FR, Zou TB, Quan BG, et al., 2014. Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions. Opt Commun, 332:321-326.
[10]Jnawali G, Rao Y, Yan HG, et al., 2013. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. Nano Lett, 13(2):524-530.
[11]Jo G, Choe M, Cho CY, et al., 2010. Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology, 21(17):175201.
[12]Kim KS, Zhao Y, Jang H, et al., 2009. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230):706-710.
[13]Liu TT, Jiang XY, Zhou CB, et al., 2019a. Black phosphorus-based anisotropic absorption structure in the mid-infrared. Opt Expr, 27(20):27618-27627.
[14]Liu TT, Jiang XY, Wang HX, et al., 2019b. Tunable anisotropic absorption in monolayer black phosphorus using critical coupling. Appl Phys Expr, 13(1):012010.
[15]Liu Y, Zhong RB, Huang JB, et al., 2019. Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials. Opt Expr, 27(5):7393-7404.
[16]Long YF, Chen X, Cai GX, et al., 2018. Electrically tunable broadband terahertz absorption with hybrid-patterned graphene metasurfaces. Nanomaterials, 8(8):562.
[17]Othman MAK, Guclu C, Capolino F, 2013. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt Expr, 21(6):7614-7632.
[18]Shi CYY, He XY, Peng J, et al., 2019. Tunable terahertz hybrid graphene-metal patterns metamaterials. Opt Laser Technol, 114:28-34.
[19]Song ZY, Jiang MW, Deng YD, et al., 2020. Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material. Opt Commun, 464:125494.
[20]Su ZX, Yin JB, Zhao XP, 2015. Terahertz dual-band meta-material absorber based on graphene/MgF2 multilayer structures. Opt Expr, 23(2):1679-1690.
[21]Xiao SY, Wang T, Liu YB, et al., 2016. Tunable light trapping and absorption enhancement with graphene ring arrays. Phys Chem Chem Phys, 18(38):26661-26669.
[22]Xiao SY, Liu TT, Cheng L, et al., 2019. Tunable anisotropic absorption in hyperbolic metamaterials based on black phosphorous/dielectric multilayer structures. J Lightw Technol, 37(13):3290-3297.
[23]Zhang JF, Liu WB, Zhu ZH, et al., 2016. Towards nano-optical tweezers with graphene plasmons: numerical investigation of trapping 10-nm particles with mid-infrared light. Sci Rep, 6:38086.
[24]Zhang Y, Feng YJ, Zhu B, et al., 2014. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt Expr, 22(19):22743.
[25]Zhang YB, Tan YW, Stormer HL, et al., 2005. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 438(7065):201-204.
[26]Zhou RY, Wang C, Xu WD, et al., 2019. Biological applications of terahertz technology based on nanomaterials and nanostructures. Nanoscale, 11(8):3445-3457.
Open peer comments: Debate/Discuss/Question/Opinion
<1>