CLC number: TN433
On-line Access: 2024-12-26
Received: 2024-05-10
Revision Accepted: 2024-07-30
Crosschecked: 2025-01-24
Cited: 0
Clicked: 1053
Citations: Bibtex RefMan EndNote GB/T7714
Jiang LUO, Yizhao LI, Yao PENG, Qiang CHENG. A V-band high-linearity BiCMOS mixer with robust temperature tolerance[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(11): 1565-1574.
@article{title="A V-band high-linearity BiCMOS mixer with robust temperature tolerance",
author="Jiang LUO, Yizhao LI, Yao PENG, Qiang CHENG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="11",
pages="1565-1574",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400378"
}
%0 Journal Article
%T A V-band high-linearity BiCMOS mixer with robust temperature tolerance
%A Jiang LUO
%A Yizhao LI
%A Yao PENG
%A Qiang CHENG
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 11
%P 1565-1574
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400378
TY - JOUR
T1 - A V-band high-linearity BiCMOS mixer with robust temperature tolerance
A1 - Jiang LUO
A1 - Yizhao LI
A1 - Yao PENG
A1 - Qiang CHENG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 11
SP - 1565
EP - 1574
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400378
Abstract: A high-linearity down mixer with outstanding robust temperature tolerance for v-band applications is proposed in this paper. The mixer’s temperature robustness has been greatly enhanced by employing a negative temperature-compensation circuit (NTC) and a positive temperature-compensation circuit (PTC) in the transconductance (gm) stage and intermediate frequency (IF) output buffer, respectively. Benefiting from the active balun with enhanced gm and emitter negative feedback technique, the linearity of the mixer has been significantly improved. For verification, a double-balanced v-band mixer is designed and implemented in a 130 nm siGe BiCMOS process. Measured over the local oscillator (LO) bandwidth from 57 GHz to 63 GHz, the mixer demonstrates a peak conversion gain (CG) of −0.5 dB, a minimal noise figure (NF) of 11.5 dB, and an input 1 dB compression point (IP1 dB) of 4.8 dBm under an LO power of −3 dBm. Furthermore, the measurements of CG, NF, and IP1 dB exhibit commendable consistency within the temperature range of −55 °C to 85 °C, with fluctuations of less than 0.8 dB, 1 dB, and 1.2 dBm, respectively. From 57 GHz to 63 GHz, the measured LO-to-radio frequency (RF) isolation is better than 46 dB, the measured return loss at the RF port is >29 dB, and at the LO port it exceeds 12 dB. With a 2.5 V supply voltage, the mixer power consumption is 15.75 mW, 18.5 mW, and 21 mW at temperatures of −55 °C, 25 °C, and 85 °C, respectively. Moreover, the mixer chip occupies a total silicon area of 0.56 mm2 including all testing pads.
[1]Ahmed A, Huang MY, Munzer D, et al., 2021. A 43‒97-GHz mixer-first front-end with quadrature input matching and on-chip image rejection. IEEE J Sol-State Circ, 56(3):705-714.
[2]Chen JD, Qian JB, Huang SY, 2020. A low-noise and high-gain folded mixer for a UWB system in 0.18-μm SiGe BiCMOS technology. IEEE Trans Circ Syst II Express Briefs, 68(2):612-616.
[3]Chi CH, Chuang HR, 2016. A 60-GHz CMOS ultra-low-power single-ended sub-harmonic mixer in 90-nm CMOS. Proc IEEE Int Symp on Radio-Frequency Integration Technology, p.1-3.
[4]Chiou HK, Chou HT, Liang CJ, 2013. A 35-to-83 GHz multiconductor-lines signal combiner for high linear and wideband mixer. IEEE Microw Wirel Compon Lett, 23(10):548-550.
[5]Choi C, Son JH, Lee O, et al., 2017. A +12-dBm OIP3 60-GHz RF downconversion mixer with an output-matching, noise- and distortion-canceling active balun for 5G applications. IEEE Microw Wirel Compon Lett, 27(3):284286.
[6]Chou HT, Liang JR, Chiou HK, 2012. V-band low-power Darlington-pair gate-pumped mixer with thin-film LC-hybrid linear combiner in 90 nm CMOS. Electron Lett, 48(16):1023-1024.
[7]Ciocoveanu R, Rimmelspacher J, Weigel R, et al., 2018. A 1.8-mW low power, PVT-resilient, high linearity, modified Gilbert-cell down-conversion mixer in 28-nm CMOS. Proc IEEE 18th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, p.19-22.
[8]Ciocoveanu R, Weigel R, Issakov V, 2019a. A highly integrated 60 GHz receiver for radar applications in 28 nm bulk CMOS. Proc IEEE Int Conf on Microwaves, Antennas, Communications and Electronic Systems, p.1-5.
[9]Ciocoveanu R, Weigel R, Hagelauer A, et al., 2019b. Modified Gilbert-cell mixer with an LO waveform shaper and switched gate-biasing for 1/f noise reduction in 28-nm CMOS. IEEE Trans Circ Syst II Express Briefs, 66(10):1688-1692.
[10]Cui J, LI PP, Sheng WX, 2023. High linearity U-band power amplifier design: a novel intermodulation point analysis method. Front Inform Technol Electron Eng, 24(1):176-186.
[11]Duan ZM, Wu BW, Wang Y, et al., 2023. A 76‒81 GHz 2×8 MIMO radar transceiver with broadband fast chirp generation and 16-antenna-in-package virtual array. IEEE J Sol-State Circ, 58(11):3103-3112.
[12]Inanlou F, Coen CT, Cressler JD, 2014. A 1.0 V, 10-22 GHz, 4 mW LNA utilizing weakly saturated SiGe HBTs for single-chip, low-power, remote sensing applications. IEEE Microw Wirel Compon Lett, 24(12):890-892.
[13]Kashani MH, Tarkeshdouz A, Afshari E, et al., 2019. A 53‒67 GHz low-noise mixer-first receiver front-end in 65-nm CMOS. IEEE Trans Circ Syst I Reg Pap, 66(6):2051-2063.
[14]Kim SK, Cui CL, Huang GC, et al., 2012. A 77 GHz low LO power mixer with a split self-driven switching cell in 65 nm CMOS technology. IEEE Microw Wirel Comp Lett, 22(9):480-482.
[15]Kolios V, Kalivas G, 2016. A 60 GHz down-conversion mixer with variable gain and bandwidth in 130 nm CMOS technology. Proc 5th Int Conf on Modern Circuits and Systems Technologies, p.1-4.
[16]Krishnamurthy S, Iotti L, Niknejad AM, 2021. Design of high-linearity mixer-first receivers for mm-wave digital MIMO arrays. IEEE J Sol-State Circ, 56(11):3375-3387.
[17]Liu ZQ, Dong JY, Chen ZL, et al., 2018. A 62‒90 GHz high linearity and low noise CMOS mixer using transformer-coupling cascode topology. IEEE Access, 6:19338-19344.
[18]Longhi PE, Pace L, Colangeli S, et al., 2020. V-band GaAs metamorphic low-noise amplifier design technique for sharp gain roll-off at lower frequencies. IEEE Microw Wirel Compon Lett, 30(6):601-604.
[19]Mazor N, Sheinman B, Katz O, et al., 2017. Highly linear 60-GHz SiGe down-conversion/up-conversion mixers. IEEE Microw Wirel Compon Lett, 27(4):401-403.
[20]Razavi B, 2000. Design of Analog CMOS Integrated Circuits. McGraw-Hill, New York, United States.
[21]Sutbas B, Ng HJ, Wessel J, et al., 2022. A V-band low-power and compact down-conversion mixer with low LO power in 130-nm SiGe BiCMOS technology. Proc 16th European Microwave Integrated Circuits Conf, p.96-99.
[22]Vardarli E, Sakalas P, Schröter M, 2022. A 5.9 mW E-/W-band SiGe-HBT LNA with 48 GHz 3-dB bandwidth and 4.5-dB noise figure. IEEE Microw Wirel Compon Lett, 32(12):1451-1454.
[23]Wang RT, Zhu W, Wang Y, 2024. An adaptive analog temperature compensated W-band front-end with ±0.0033 dB/°C gain variation across -30 °C to 120 °C. IEEE Trans Circ Syst II Express Briefs, 71(2):542-546.
[24]Wei HJ, Meng CC, Wang TW, et al., 2012. 60-GHz dual-conversion down-/up-converters using Schottky diode in 0.18 μm foundry CMOS technology. IEEE Trans Microw Theory Tech, 60(6):1684-1698.
[25]Wu CL, Yu CK, Kenneth KO, 2015. Amplification of nonlinearity in multiple gate transistor millimeter wave mixer for improvement of linearity and noise figure. IEEE Microw Wirel Compon Lett, 25(5):310-312.
[26]Yu YM, Kang K, 2020. Analysis and design of transformer-based CMOS ultra-wideband millimeter-wave circuits for wireless applications: a review. Front Inform Technol Electron Eng, 21(1):97-115.
[27]Yu YM, Liu RY, Zuo YJ, et al., 2024. A 60‒90 GHz mixer-first receiver with adaptive temperature-compensation technique. IEEE Microw Wirel Technol Lett, 34(4):443-446.
Open peer comments: Debate/Discuss/Question/Opinion
<1>