Full Text:   <0>

Summary:  <6>

CLC number: TN929.5

On-line Access: 2026-01-08

Received: 2025-05-25

Revision Accepted: 2025-10-21

Crosschecked: 2026-01-08

Cited: 0

Clicked: 34

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yingliang XIAN

https://orcid.org/0009-0000-7109-6001

Guangchi ZHANG

https://orcid.org/0000-0001-8292-401X

Miao CUI

https://orcid.org/0000-0002-5947-7036

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.11 P.2353-2364

http://doi.org/10.1631/FITEE.2500333


QoS-aware multi-user scheduling and power control for modular XL-MIMO communications


Author(s):  Yingliang XIAN, Yaqian YI, Guangchi ZHANG, Miao CUI, Qingqing WU, Xiaoli XU, Yong ZENG

Affiliation(s):  School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China; more

Corresponding email(s):   xianyl23@163.com, gczhang@gdut.edu.cn, cuimiao@gdut.edu.cn

Key Words:  Extremely large-scale multiple-input multiple-output (XL-MIMO), User scheduling, Power control, Near-field communication, Modular array, Interference suppression


Yingliang XIAN, Yaqian YI, Guangchi ZHANG, Miao CUI, Qingqing WU, Xiaoli XU, Yong ZENG. QoS-aware multi-user scheduling and power control for modular XL-MIMO communications[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(11): 2353-2364.

@article{title="QoS-aware multi-user scheduling and power control for modular XL-MIMO communications",
author="Yingliang XIAN, Yaqian YI, Guangchi ZHANG, Miao CUI, Qingqing WU, Xiaoli XU, Yong ZENG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="11",
pages="2353-2364",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500333"
}

%0 Journal Article
%T QoS-aware multi-user scheduling and power control for modular XL-MIMO communications
%A Yingliang XIAN
%A Yaqian YI
%A Guangchi ZHANG
%A Miao CUI
%A Qingqing WU
%A Xiaoli XU
%A Yong ZENG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 11
%P 2353-2364
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500333

TY - JOUR
T1 - QoS-aware multi-user scheduling and power control for modular XL-MIMO communications
A1 - Yingliang XIAN
A1 - Yaqian YI
A1 - Guangchi ZHANG
A1 - Miao CUI
A1 - Qingqing WU
A1 - Xiaoli XU
A1 - Yong ZENG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 11
SP - 2353
EP - 2364
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500333


Abstract: 
This study addresses the challenges of near-field interference suppression and resource allocation in extremely large-scale multiple-input multiple-output (XL-MIMO) communication systems, particularly under dense-user scenarios. We propose a quality-of-service (QoS)-aware joint user scheduling and power control scheme. Leveraging the spherical wave (SW) characteristics of near field channels, a dual-domain interference suppression strategy is developed by analyzing the spatial correlation of beam focusing vectors in terms of both angular separation and distance constraints. Based on this, a spatial correlation-based scheduling (SCS) algorithm is designed. By integrating this user selection strategy with a dynamic power allocation mechanism, the proposed approach optimizes the sum spectral efficiency while ensuring the user QoS. This framework is further extended to modular XL-MIMO systems. We show how modular deployment can enhance spatial resolution and develop an adapted QoS-aware user scheduling algorithm, called modular SCS (SCS-mod), for this architecture. Simulation results validate that the proposed algorithms significantly outperform existing schemes in terms of sum spectral efficiency and the number of scheduled users, especially under high user density and high transmission power conditions.

面向模块化XL-MIMO通信的QoS感知多用户调度和功率控制

贤英良1,易雅倩1,张广驰1,崔苗1,武庆庆2,徐晓莉3,曾勇3,4
1广东工业大学信息工程学院,中国广州市,510006
2上海交通大学电子工程系,中国上海市,200240
3东南大学移动通信国家重点实验室,中国南京市,210096
4紫金山实验室,中国南京市,211111
摘要:本研究针对超大规模多输入多输出(XL-MIMO)系统在密集用户场景下的近场干扰抑制与资源分配挑战,提出一种服务质量(QoS)感知的联合用户调度与功率控制方法。基于近场信道的球面波(SW)传播特性,通过从角度差异和距离约束两个方面分析波束聚焦向量的空间相关性,构建一种双域干扰抑制策略。设计了基于空间相关性的调度算法(SCS)。该算法结合用户分组策略与动态功率分配机制,在保障用户服务质量的同时优化总频谱效率,并进一步扩展至模块化XL-MIMO系统。利用模块化布局增强空间分辨率,并提出一种适应性的、基于服务质量的用户调度算法,称作"模块化SCS"(SCS-mod)。仿真结果证实,所提算法在总频谱效率与调度用户数量上显著优于现有方案,尤其在高密度用户与高功率场景下性能优势更为突出。

关键词:超大规模多输入多输出(XL-MIMO);用户调度;功率控制;近场通信;模块化阵列;干扰抑制

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Björnson E, Sanguinetti L, Wymeersch H, et al., 2019. Massive MIMO is a reality—what is next?: five promising research directions for antenna arrays. Digit Signal Process, 94:3-20.

[2]Chen YH, Dai LL, 2024. Non-stationary channel estimation for extremely large-scale MIMO. IEEE Trans Wirel Commun, 23(7):7683-7697.

[3]Cui MY, Dai LL, 2022. Channel estimation for extremely large-scale MIMO: far-field or near-field? IEEE Trans Commun, 70(4):2663-2677.

[4]De Carvalho E, Ali A, Amiri A, et al., 2020. Non-stationarities in extra-large-scale massive MIMO. IEEE Wirel Commun, 27(4):74-80.

[5]De Souza JHI, Filho JCM, Amiri A, et al., 2023. QoS-aware user scheduling in crowded XL-MIMO systems under non-stationary multi-state LoS/NLoS channels. IEEE Trans Veh Technol, 72(6):7639-7652.

[6]Dong ZJ, Zeng Y, 2022. Near-field spatial correlation for extremely large-scale array communications. IEEE Commun Lett, 26(7):1534-1538.

[7]Dong ZJ, Li XR, Zeng Y, 2024. Characterizing and utilizing near-field spatial correlation for XL-MIMO communication. IEEE Trans Commun, 72(12):7922-7937.

[8]Du HY, Kang JW, Niyato D, et al., 2022. Reconfigurable intelligent surface-aided joint radar and covert communications: fundamentals, optimization, and challenges. IEEE Veh Technol Mag, 17(3):54-64.

[9]González-Coma JP, Lopez-Martinez FJ, Castedo L, 2021. Low-complexity distance-based scheduling for multi-user XL-MIMO systems. IEEE Wirel Commun Lett, 10(11):2407-2411.

[10]González-Coma JP, Lopez-Martinez FJ, Castedo L, 2023. Joint user scheduling and precoding for XL-MIMO systems with imperfect CSI. IEEE Wirel Commun Lett, 12(10):1657-1661.

[11]Jeon J, Lee G, Ibrahim AAI, et al., 2021. MIMO evolution toward 6G: modular massive MIMO in low-frequency bands. IEEE Commun Mag, 59(11):52-58.

[12]Lee J, Chung H, Cho Y, et al., 2025. Near-field channel estimation for XL-RIS assisted multi-user XL-MIMO systems: hybrid beamforming architectures. IEEE Trans Commun, 73(3):1560-1574.

[13]Li XR, Lu HQ, Zeng Y, et al., 2022. Near-field modeling and performance analysis of modular extremely large-scale array communications. IEEE Commun Lett, 26(7):1529-1533.

[14]Li XR, Dong ZJ, Zeng Y, et al., 2023. Near-field beam focusing pattern and grating lobe characterization for modular XL-array. Proc IEEE Global Communications Conf, p.4068-4073.

[15]Li XR, Dong ZJ, Zeng Y, et al., 2024. Multi-user modular XL-MIMO communications: near-field beam focusing pattern and user grouping. IEEE Trans Wirel Commun, 23(10):13766-13781.

[16]Liu ZL, Zhang JY, Liu ZH, et al., 2024. Cell-free XL-MIMO meets multi-agent reinforcement learning: architectures, challenges, and future directions. IEEE Wirel Commun, 31(4):155-162.

[17]Lu HQ, Zeng Y, 2021. How does performance scale with antenna number for extremely large-scale MIMO? Proc IEEE Int Conf on Communications, p.1-6.

[18]Lu HQ, Zeng Y, 2022. Communicating with extremely large-scale array/surface: unified modeling and performance analysis. IEEE Trans Wirel Commun, 21(6):4039-4053.

[19]Lu HQ, Zeng Y, You CS, et al., 2024. A tutorial on near-field XL-MIMO communications toward 6G. IEEE Commun Surv Tutor, 26(4):2213-2257.

[20]Palomar DP, Fonollosa JR, 2005. Practical algorithms for a family of waterfilling solutions. IEEE Trans Signal Process, 53(2):686-695.

[21]Qu N, Li BB, Shafin R, et al., 2022. Angle-based downlink beam selection and user scheduling for massive MIMO systems. IEEE Trans Wirel Commun, 21(10):8077-8089.

[22]Sherman J, 1962. Properties of focused apertures in the Fresnel region. IRE Trans Antenn Propag, 10(4):399-408.

[23]Tang AZ, Wang JB, Pan YJ, et al., 2024. Line-of-sight extra-large MIMO systems with angular-domain processing: channel representation and transceiver architecture. IEEE Trans Commun, 72(1):570-584.

[24]Wang HZ, Zeng Y, 2023. Can sparse arrays outperform collocated arrays for future wireless communications? Proc IEEE Globecom Workshops, p.667-672.

[25]Wu ZD, Dai LL, 2023. Multiple access for near-field communications: SDMA or LDMA? IEEE J Sel Areas Commun, 41(6):1918-1935.

[26]Yang JY, Zhang JY, Xu BK, et al., 2024. Precoding and power control design for cell-free XL-MIMO: from far-field to near-field. Proc Int Conf on Ubiquitous Communication, p.63-67.

[27]Zhang YZ, Yang ZA, Yue SH, et al., 2024. Hybrid near-field and far-field XL-MIMO: how many users can be supported? IEEE Commun Lett, 28(10):2402-2406.

[28]Zheng Y, Wang CX, Huang J, et al., 2024. A novel ultra-massive MIMO BDCM for 6G wireless communication systems. IEEE Trans Wirel Commun, 23(4):3221-3237.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE