Full Text:   <229>

CLC number: TN911.7

On-line Access: 2026-01-09

Received: 2025-06-11

Revision Accepted: 2025-11-13

Crosschecked: 2026-01-11

Cited: 0

Clicked: 299

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Petr BORISKOV

https://orcid.org/0000-0002-2904-9612

Vadim PUTROLAYNEN

https://orcid.org/0000-0001-5707-7760

Andrei VELICHKO

https://orcid.org/0000-0002-9341-1831

Kristina PELTONEN

https://orcid.org/0009-0004-3584-6142

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.12 P.2688-2702

http://doi.org/10.1631/FITEE.2500402


Entropy-statistical approach to phase-locking detection of oscillations


Author(s):  Petr BORISKOV, Vadim PUTROLAYNEN, Andrei VELICHKO, Kristina PELTONEN

Affiliation(s):  Institute of Physics and Technology, Petrozavodsk State University, Petrozavodsk 185910, Russia

Corresponding email(s):   boriskov@petrsu.ru, vputr@petrsu.ru, velichkogf@gmail.com, krispelt@yandex.ru

Key Words:  Pulse oscillations, Phase locking, High-order synchronization, Subharmonic ratio, Fuzzy entropy, Hilbert transform


Share this article to: More <<< Previous Article|

Petr BORISKOV, Vadim PUTROLAYNEN, Andrei VELICHKO, Kristina PELTONEN. Entropy-statistical approach to phase-locking detection of oscillations[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(12): 2688-2702.

@article{title="Entropy-statistical approach to phase-locking detection of oscillations",
author="Petr BORISKOV, Vadim PUTROLAYNEN, Andrei VELICHKO, Kristina PELTONEN",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="12",
pages="2688-2702",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500402"
}

%0 Journal Article
%T Entropy-statistical approach to phase-locking detection of oscillations
%A Petr BORISKOV
%A Vadim PUTROLAYNEN
%A Andrei VELICHKO
%A Kristina PELTONEN
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 12
%P 2688-2702
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500402

TY - JOUR
T1 - Entropy-statistical approach to phase-locking detection of oscillations
A1 - Petr BORISKOV
A1 - Vadim PUTROLAYNEN
A1 - Andrei VELICHKO
A1 - Kristina PELTONEN
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 12
SP - 2688
EP - 2702
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500402


Abstract: 
This study proposes a method for analyzing synchronization in oscillator systems, illustrated by modeling the dynamics of a circuit of two resistively coupled pulse oscillators. The dynamic characteristic of synchronization is the fuzzy entropy (FuzzyEn), which is calculated from a time series composed of the ratios of the number of pulse periods (subharmonic ratio, SHR) at phase-locking intervals. Low and high entropy values indicate strong and weak synchronization between the two oscillators, respectively. The proposed method effectively visualizes synchronized modes of the circuit using entropy maps of synchronization states. In addition, a classification of synchronization states is proposed based on the dependency of FuzzyEn on the embedding vector length of the SHR time series. An extension of this method for analyzing non-pulse (non-spike) signals is demonstrated using the example of phase–phase coupling rhythms of the local field potential of the rat hippocampus. The proposed entropy-statistical approach, using integers and pulse signal forms, is well-suited for signal synchronization analysis and can be implemented on digital mobile platforms.

熵统计法在振荡锁相检测中的应用

Petr BORISKOV, Vadim PUTROLAYNEN, Andrei VELICHKO,Kristina PELTONEN
彼得罗扎沃茨克国立大学物理与技术学院,俄罗斯彼得罗扎沃茨克市,185910
摘要:通过构建两个电阻耦合脉冲振荡器电路的动力学特性,提出一种分析振荡器系统同步性的方法。同步的动态特征表现为模糊熵(FuzzyEn),其数值由时间序列计算得出,该时间序列由锁相区间内脉冲周期数比值(次谐波比,SHR)组成。低熵值与高熵值分别表明两个振荡器之间存在强同步与弱同步。通过同步状态的熵图,有效可视化电路的同步模式。此外,基于FuzzyEn对SHR时间序列嵌入向量长度的依赖性,提出同步状态的分类方案。通过分析大鼠海马局部场电位中的相位–相位耦合节律,展示了该方法在非脉冲(非尖峰)信号分析中的扩展应用。所提出的基于整数与脉冲信号形式的熵统计方法非常适用于信号同步分析,且可在数字移动平台上实现。

关键词:脉冲振荡;锁相;高阶同步;次谐波比;模糊熵;希尔伯特变换

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alter O, Brown PO, Botstein D, 2000. Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci USA, 97(18):10101-10106.

[2]Belluscio MA, Mizuseki K, Schmidt R, et al., 2012. Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. J Neurosci, 32(2):423-435.

[3]Biagi PF, Piccolo R, Ermini A, et al., 2001. Possible earthquake precursors revealed by LF radio signals. Nat Haz Earth Syst Sci, 1(1-2):99-104.

[4]Bonet-Jara J, Quijano-Lopez A, Morinigo-Sotelo D, et al., 2021. Sensorless speed estimation for the diagnosis of induction motors via MCSA. Review and commercial devices analysis. Sensors, 21(15):5037.

[5]Boriskov P, 2024. Chaotic discrete map of pulse oscillator dynamics with threshold nonlinear rate coding. Nonl Dyn, 112(5):3917-3933.

[6]Boriskov P, Putrolaynen V, Velichko A, et al., 2024. Entropy-based detection of synchronization of pulse oscillators: a comparative analysis of entropic measures. Proc SPIE 13217, 3rd Int Conf on Digital Technologies, Optics, and Materials Science, Article 132170Y.

[7]Chen WT, Wang ZZ, Xie HB, et al., 2007. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans Neur Syst Rehabil Eng, 15(2):266-272.

[8]Chou J, Bramhavar S, Ghosh S, et al., 2019. Analog coupled oscillator based weighted Ising machine. Sci Rep, 9(1):14786.

[9]Cui LL, Wang HB, Zhao DZ, et al., 2024. Synchronous odd symmetric transform for rolling bearing fault diagnosis. Measurement, 226:114184.

[10]Delgado-Bonal A, Marshak A, 2019. Approximate entropy and sample entropy: a comprehensive tutorial. Entropy, 21(6):541.

[11]Ishikawa A, Mieno H, 1979. The fuzzy entropy concept and its application. Fuzzy Sets Syst, 2(2):113-123.

[12]Li H, Zhang CC, Zhang Y, et al., 2023. A fractional-N frequency synthesizer with phase synchronization and programmable phase control capability. Microelectron J, 142:105996.

[13]Lowet E, Roberts MJ, Bonizzi P, et al., 2016. Quantifying neural oscillatory synchronization: a comparison between spectral coherence and phase-locking value approaches. PLoS ONE, 11(1):e0146443.

[14]Mallick A, Bashar MK, Truesdell DS, et al., 2020. Using synchronized oscillators to compute the maximum independent set. Nat Commun, 11(1):4689.

[15]Nikonov DE, Csaba G, Porod W, et al., 2015. Coupled-oscillator associative memory array operation for pattern recognition. IEEE J Explor Sol State Comput Dev Circ, 1:85-93.

[16]Park J, Mackay S, Wright E, 2003. Preface. In: Park J, Mackay S, Wright E (Eds.), Practical Data Communications for Instrumentation and Control. Newnes, Oxford, p.xi-xiii.

[17]Pikovsky A, Rosenblum M, Kurths J, et al., 2002. Synchronization: a universal concept in nonlinear science. Am J Phys, 70(6):655.

[18]Rabiner LR, Gold B, Yuen CK, 1978. Theory and application of digital signal processing. IEEE Trans Syst Man Cybern, 8(2):146.

[19]Ramírez E, Ruipérez-Campillo S, Castells F, et al., 2024. Novel synchronization method for vectorcardiogram reconstruction from ECG printouts: a comprehensive validation approach. Biomed Signal Process Contr, 91:106027.

[20]Romera M, Talatchian P, Tsunegi S, et al., 2018. Vowel recognition with four coupled spin-torque nano-oscillators. Nature, 563(7730):230-234.

[21]Scheffer-Teixeira R, Tort ABL, 2016. On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. eLife, 5:e20515.

[22]Schüßler HW, Steffen P, 1998. Halfband filters and Hilbert transformers. Circ Syst Signal Process, 17(2):137-164.

[23]Velichko A, 2019. A method for evaluating chimeric synchronization of coupled oscillators and its application for creating a neural network information converter. Electronics, 8(7):756.

[24]Velichko A, Belyaev M, Putrolaynen V, et al., 2018a. Modeling of thermal coupling in VO2-based oscillatory neural networks. Sol-State Electron, 139:8-14.

[25]Velichko A, Belyaev M, Putrolaynen V, et al., 2018b. Thermal coupling and effect of subharmonic synchronization in a system of two VO2 based oscillators. Sol-State Electron, 141:40-49.

[26]Wang TS, Roychowdhury J, 2019. OIM: oscillator-based Ising machines for solving combinatorial optimisation problems. Proc 18th Int Conf on Unconventional Computation and Natural Computation, p.232-256.

[27]Xu XX, Zheng CG, Zhang T, 2013. Reduction in LFP cross-frequency coupling between theta and gamma rhythms associated with impaired STP and LTP in a rat model of brain ischemia. Front Comput Neurosci, 7:27.

[28]Zheng CG, Bieri KW, Hsiao YT, et al., 2016. Spatial sequence coding differs during slow and fast gamma rhythms in the hippocampus. Neuron, 89(2):398-408.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE