CLC number: TP13
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 6941
LIU Xiang, CHEN Lin, SUN You-xian. A new digital approach to design multivariable robust optimal control systems[J]. Journal of Zhejiang University Science A, 2005, 6(7): 707-710.
@article{title="A new digital approach to design multivariable robust optimal control systems",
author="LIU Xiang, CHEN Lin, SUN You-xian",
journal="Journal of Zhejiang University Science A",
volume="6",
number="7",
pages="707-710",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.A0707"
}
%0 Journal Article
%T A new digital approach to design multivariable robust optimal control systems
%A LIU Xiang
%A CHEN Lin
%A SUN You-xian
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 7
%P 707-710
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.A0707
TY - JOUR
T1 - A new digital approach to design multivariable robust optimal control systems
A1 - LIU Xiang
A1 - CHEN Lin
A1 - SUN You-xian
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 7
SP - 707
EP - 710
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.A0707
Abstract: This paper presents a new design of robust optimal controller for multivariable system. The row characteristic functions of a linear multivariable system and dynamic decoupling of its equivalent system, were applied to change the transfer function matrix of a closed-loop system into a normal function matrix, so that robust H∞ optimal stability is guaranteed. Furthermore, for the decoupled equivalent control system the l∞ optimization approach is used to have the closed-loop system embody optimal time domain indexes. A successful application on a heater control system verified the excellence of the new control scheme.
[1] Dahleh, M.A., Pearson, J.B., 1987. l1 optimal feedback controllers for MIMO discrete-time systems. IEEE Trans. Auto. Control, 32(4):314-322.
[2] Dahleh, M.A., Pearson, J.B., 1988. Optimal rejection of persistent disturbances, robust stability, and mixed sensitivity minimization. IEEE Trans. Auto. Control, 33:722-731.
[3] Dias, B.I.J., Dahleh, M.A., 1993. Minimization of the maximum peak-to-peak gain: The general multiblock problem. IEEE Trans. Auto. Control, 38(10):1459-1482.
[4] Gao, D.L., Wu, Q., 1998. Multivariable Frequency Domain Control Theory. Tsinghua University Press, Beijing, p.199-201 (in Chinese).
[5] Hung, Y.S., MacFarlane, A.G.J., 1982. Multivariable Feedback: A Quasi-Classical Approach. Springer-Verlag.
[6] Kaileth, T., 1980. Linear Systems. Englewood Cliffs. Prentice-hall, N. J.
[7] Liu, X., Sun, Y.X., 2000. Robust stabilizing controller design for optimal dynamic performance indexes. Control and Design, 15(1):11-14 (in Chinese).
[8] Liu, X., Shen, G.J., Chen, L., Sun, Y.X., 2004. Multivariable Robust Digital Control: An Extended Schur Decomposition Approach. Proceedings of the 5th World Congress on Intelligent Control and Automation, p.519-521.
Open peer comments: Debate/Discuss/Question/Opinion
<1>