[1] Long, Y.T., Abu-Irhayem, E., Kraatz, H.B., 2005. Peptide electron transfer: more questions than answers. Chem. Eur. J., 11(18):5186-5194.
[2] Schlag, E.W., Sheu, S.Y., Yang, D.Y., Selzle, H.L., Lin, S.H., 2000a. Charge conductivity in peptides: dynamic simulations of a bifunctional model supporting experimental data. Proc. Natl. Acad. Sci. USA, 97(3):1068-1072.
[3] Schlag, E.W., Yang, D.Y., Sheu, S.Y., Selzle, H.L., Lin, S.H., Rentzepis, P.M., 2000b. Dynamical principles in biological processes: a model of charge migration in proteins and DNA. Proc. Natl. Acad. Sci. USA, 97(18):9849-9854.
[4] Sheu, S.Y., Schlag, E.W., 2002. Protein charge transport in gas phase. Int. J. Mass Spectrometry, 219(1):73-77.
[5] Sheu, S.Y., Yang, D.Y., Selzle, H.L., Schlag, E.W., 2002. Charge transport in a polypeptide chain. Eur. Phys. J. D, 20(3):557-563.
[6] Weinkauf, R., Schanen, P., Yang, D., Soukara, S., Schlag, E.W., 1995. Elementary processes in peptides: electron mobility and dissociation in peptide cations in the gas phase. J. Phys. Chem., 99(28):11255-11265.
[7] Weinkauf, R., Schanen, P., Metsala, A., Schlag, E.W., Burgle, M., Kessler, H., 1996. Highly efficient charge transfer in peptide cations in the gas phase―Threshold effects and mechanism. J. Phys. Chem., 100(47):18567-18585.
[8] Weinkauf, R., Schlag, E.W., Martinez, T.J., Levine, R.D., 1997. Nonstationary electronic states and site-selective reactivity. J. Phys. Chem. A, 101(42):7702-7710.
Open peer comments: Debate/Discuss/Question/Opinion
<1>