Full Text:   <2902>

CLC number: Q81

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 2

Clicked: 5142

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2006 Vol.7 No.9 P.683-685

http://doi.org/10.1631/jzus.2006.B0683


Demonstration of a new biosensing concept for immunodiagnostic applications based on change in surface conductance of antibodies after biomolecular interactions


Author(s):  VASHIST Sandeep Kumar, KAUR Inderpreet, BAJPAI Ram Prakash, BHARADWAJ Lalit Mohan, TEWARI Rupinder, RAITERI Roberto

Affiliation(s):  Department of Biophysical and Electronic Engineering, University of Genoa, via Opera Pia 11A, Genoa-16145, Italy; more

Corresponding email(s):   s.vashist@dibe.unige.it

Key Words:  Immunodiagnosis, Antibodies, Immune complex, Conductance


Share this article to: More |Next Article >>>


Abstract: 
We report an important observation that the surface conductivity of antibody layer immobilized on polylysine-coated glass substrate decreases upon the formation of complex with their specific antigens. This change in conductivity has been observed for both monoclonal and polyclonal antibodies. The conductance of monoclonal mouse IgG immobilized on polylysine-coated glass substrate changed from 1.02×10−8−1 to 1.41×10−11−1 at 10 V when complex is formed due to the specific biomolecular interactions with rabbit anti-mouse IgG F(ab′)2. Similar behavior was observed when the same set up was tested in two clinical assays: (1) anti-Leishmania antigen polyclonal antibodies taken from Kala Azar positive patient serum interacting with Leishmania promastigote antigen, and (2) anti-p21 polyclonal antibodies interacting with p21 antigen. The proposed concept can represent a new immunodiagnostic technique and may have wide ranging applications in biosensors and nanobiotechnology too.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE