CLC number: TG423
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-09-07
Cited: 0
Clicked: 5610
Xue Wang, Liang-fei Zhan, Qian-gang Pan, Zhi-jun Liu, Hong Liu, Yong-shun Tao. Microstructure and creep properties of high Cr resisting weld metal alloyed with Co[J]. Journal of Zhejiang University Science A, 2010, 11(10): 756-760.
@article{title="Microstructure and creep properties of high Cr resisting weld metal alloyed with Co",
author="Xue Wang, Liang-fei Zhan, Qian-gang Pan, Zhi-jun Liu, Hong Liu, Yong-shun Tao",
journal="Journal of Zhejiang University Science A",
volume="11",
number="10",
pages="756-760",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000215"
}
%0 Journal Article
%T Microstructure and creep properties of high Cr resisting weld metal alloyed with Co
%A Xue Wang
%A Liang-fei Zhan
%A Qian-gang Pan
%A Zhi-jun Liu
%A Hong Liu
%A Yong-shun Tao
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 10
%P 756-760
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000215
TY - JOUR
T1 - Microstructure and creep properties of high Cr resisting weld metal alloyed with Co
A1 - Xue Wang
A1 - Liang-fei Zhan
A1 - Qian-gang Pan
A1 - Zhi-jun Liu
A1 - Hong Liu
A1 - Yong-shun Tao
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 10
SP - 756
EP - 760
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000215
Abstract: A 9% Cr ferritic steel weld metal containing 1% Co, partially substituted for nickel, was prepared by submerged arc welding (SAW) processing. The microstructure and creep properties of the weld metal were investigated. The microstructure exhibited a fully tempered martensitic structure free of δ-ferrite. The creep properties of the obtained weld metal were inferior to those of the P92 base metal at 600 and 650 °C. The values of A and n for weld metal in the Norton power law constitution at 650 °C are 1.1×10−21 and 8.1, respectively.
[1]Barnes, A., Abson, D., 2003. The Effect of Composition on Microstructural Development and Toughness of Weld Metals for Advanced High Temperature 9–13%Cr Steels. 2nd International Conference Intergrity of High Temperature Welds, IOM Communications Ltd., London.
[2]Baune, E., Cerjak, H., Caminada, S., Jochun, C., Mayr, P., Pasternak, J., 2006. Weldability and Properties of New Creep Resistant Materials for Use in Ultra Supercritical Coal Fired Power Plants. 8th International Conference Materials for Advanced Power Engineering, Forschungszentrum Jülich GmbH, Liege, Germany.
[3]Bendick, W., Deshayes, F., Haarmann, K., Vaillant, J.C., 1999. New 9-12Cr Steels in Boiler Tubes and Pipes: Operating Experiences and Future Developments. In: Viswanathan, R., Nutting, J., (Eds.), Advanced Heat Resistant Steels for Power Generation, IOM Communications Ltd., London, p.133.
[4]Brühl, 1989. Verhalten des 9%-Chromstahles X10CrMoVNb91 und Seiner Schweißverbindungen im Kurz-und Langzeitversuch. PhD Thesis, Graz, Austria (in German).
[5]Foldyna, V., Purmenský, J., Kubon, Z., 2001. Development of advanced chromium steels with respect to microstructure and structural stability. ISIJ International, 41(Suppl.):81-85.
[6]Kern, T.U., Staubli, M., Scarlin, B., 2002. The European efforts in material development for 650 °C USC power plants—COST522. ISIJ International, 42(12):1515-1519.
[7]Kimura, K., Sawada, K., Kushima, H., Toda, Y., 2006. Degradation Behaviour and Long-term Creep Strength of 12Cr Ferritic Creep Resistant Steels. 8th International Conference Materials for Advanced Power Engineering, Forschungszentrum Jülich GmbH, Liege, Germany.
[8]Klotz, U.E., Solenthaler, C., Uggowitzer, P.J., 2008. Martensitic-austenitic 9-12% Cr steels—Alloy design, microstructural stability and mechanical properties. Materials Science and Engineering: A, 476(1-2):186-194.
[9]Knežević, V., Balun, J., Sauthoff, G., Inden, G., 2008. Design of martensitic/ferritic heat-resistant steels for application at 650 °C with supporting thermodynamic modeling. Materials Science and Engineering: A, 477(1-2):334-343.
[10]Letofsky, E., 2001. Das Verhalten von Schweißverbindungen moderner Kraftwerkswerktoffe. PhD Thesis, Graz University of Technology, Austria (in German).
[11]Maruyama, K., Sawada, K., Koike, J., 2001. Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ International, 41(6):641-653.
[12]Masuyama, F., 2001. History of power plants and progress in heat resistant steels. ISIJ International, 41(6):612-625.
[13]Masuyama, F., 2002. New Developments in Steels for Power Generation Boilers. In: Viswanathan, R., Nutting, J., (Eds.), Advanced Heat Resistant Steels for Power Generation, IOM Communications Ltd., London, p.33.
[14]Naoi, H., Mimua, H., Ohgami, M., Morimoto, H., Tanaka, T., Yazaki, Y., 1995. NF616 Pipe Production and Properties and Welding Consumable Development. Conference New Steels for Advanced Plant up to 620 °C, EPRI, London.
[15]Santella, M.L., Swindeman, R.W., Reed, R.W., Tanzosh, J.M., 2003. Martensite Transformation, Microsegregation, and Creep Strength of 9Cr-1Mo-V Steel Weld Metal. 6th International Trends in Welding Research Conference Proceedings, Pine Mountain, GA, ASM International.
[16]Sireesha, M., Albert, S.K., Sundaresan, S., 2001. Importance of filler material chemistry for optimizing weld metal mechanical properties in modified 9Cr-1Mo steel. Science and Technology of Welding and Joining, 6(4):247-254.
[17]Vaillant, J.C., Vandenberghe, B., Hahn, B., Heuser, H., Jochum, C., 2008. T/P23,24,911 and 92: New grades for advanced coal-fired power plants—Properties and experience. International Journal of Pressure Vessels and Piping, 85(1-2):38-46.
[18]Yamashita, K., Goto, A., 2003. Welding consumables of high Cr ferritic heat resisting steels for fossil fuel power boilers. KOBE Steel Engineering Reports, 53(2):79-84.
Open peer comments: Debate/Discuss/Question/Opinion
<1>