Full Text:   <3325>

CLC number: TM922.71

On-line Access: 2015-08-04

Received: 2014-09-22

Revision Accepted: 2015-04-07

Crosschecked: 2015-07-20

Cited: 1

Clicked: 4935

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiao-yan Huang

http://orcid.org/0000-0001-5185-9040

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2015 Vol.16 No.8 P.607-615

http://doi.org/10.1631/jzus.A1400284


A combined simulation of high speed train permanent magnet traction system using dynamic reluctance mesh model and Simulink


Author(s):  Xiao-yan Huang, Jian-cheng Zhang, Chuan-ming Sun, Zhang-wen Huang, Qin-fen Lu, You-tong Fang, Li Yao

Affiliation(s):  1School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   luqinfen@zju.edu.cn

Key Words:  Permanent magnet traction system, Dynamic reluctance mesh model, Dynamic parameter model (DPM), High speed train, Maximum torque per ampere control


Xiao-yan Huang, Jian-cheng Zhang, Chuan-ming Sun, Zhang-wen Huang, Qin-fen Lu, You-tong Fang, Li Yao. A combined simulation of high speed train permanent magnet traction system using dynamic reluctance mesh model and Simulink[J]. Journal of Zhejiang University Science A, 2015, 16(8): 607-615.

@article{title="A combined simulation of high speed train permanent magnet traction system using dynamic reluctance mesh model and Simulink",
author="Xiao-yan Huang, Jian-cheng Zhang, Chuan-ming Sun, Zhang-wen Huang, Qin-fen Lu, You-tong Fang, Li Yao",
journal="Journal of Zhejiang University Science A",
volume="16",
number="8",
pages="607-615",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400284"
}

%0 Journal Article
%T A combined simulation of high speed train permanent magnet traction system using dynamic reluctance mesh model and Simulink
%A Xiao-yan Huang
%A Jian-cheng Zhang
%A Chuan-ming Sun
%A Zhang-wen Huang
%A Qin-fen Lu
%A You-tong Fang
%A Li Yao
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 8
%P 607-615
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400284

TY - JOUR
T1 - A combined simulation of high speed train permanent magnet traction system using dynamic reluctance mesh model and Simulink
A1 - Xiao-yan Huang
A1 - Jian-cheng Zhang
A1 - Chuan-ming Sun
A1 - Zhang-wen Huang
A1 - Qin-fen Lu
A1 - You-tong Fang
A1 - Li Yao
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 8
SP - 607
EP - 615
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400284


Abstract: 
This paper presents a combined dynamic parameter model (DPM) of a high speed train permanent magnet traction system using a dynamic reluctance mesh model and MATLAB Simulink. First, the dynamic reluctance model of the permanent magnet synchronous motor is introduced. Then the combined models of the traction system under id=0 and maximum torque per ampere control are built. Simulations using both constant parameter models and DPM models are carried out. The speed and torque characteristics are obtained. The results confirm that the DPM model provides higher accuracy without much sacrifice of time consumption or computation resource.

The paper presents usability of combined use of dynamic parameter model of PM motor and SIMULINK model of the high speed PM motor traction system under two different control modes (id=0 and MTPA control mode). Dynamic reluctance mesh model (DRMM) is used for the determination of the PM motor parameters under different conditions. Determined variation of the motor parameters is stored in the form of look-up table and used in the SIMULINK model of the PM motor traction system. The work can be interesting for the researchers in the field.

基于动态磁网络和Simulink的高速铁路牵引传动系统联合仿真

目的:提出基于动态磁网络和Simulink的高速铁路牵引传动系统的动态参数模型,提高高速铁路牵引传动系统仿真分析的准确度。
方法:将动态磁网络计算得出的动态参数LdLq等以查表的形式嵌入Simulink模型,有效地实现动态 参数。
结论:该动态参数模型能在不显著增加仿真运算量和仿真时间的条件下有效地提高计算的准确度。

关键词:高速铁路牵引传动系统;永磁电机;动态参数模型;动态磁网络;Simulink

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Araujo, D.M., Coulomb, J.L., Chadebec, O., et al., 2014. A hybrid boundary element method-reluctance network method for open boundary 3-d nonlinear problems. IEEE Transactions on Magnetics, 50(2):77-80.

[2]Carpenter, C.J., 1968. Magnetic equivalent circuits. Proceedings of the Institution of Electrical Engineers, 115(10):1503-1511.

[3]Dogan, H., Garbuio, L., Nguyen-Xuan, H., et al., 2013. Multistatic reluctance network modeling for the design of permanent-magnet synchronous machines. IEEE Transactions on Magnetics, 49(5):2347-2350.

[4]Lee, K.K., 2012. The evolution and outlook of core technologies for high-speed railway in China. 1st International Workshop on High-speed and Intercity Railways, 2:495-507.

[5]Lu, Q.F., Wang, B., Huang, X.Y., et al., 2011. Simulation software for CRH2 and CRH3 traction driver systems based on Simulink and VC. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(12):945-949.

[6]Matsuoka, K., 2007. Development trend of the permanent magnet synchronous motor for railway traction. IEEJ Transactions on Electrical and Electronic Engineering, 2(2):154-161.

[7]Mermet-Guyennet, M., 2010. New power technologies for traction drives. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Pisa, Italy, p.719-723.

[8]Nguyen-Xuan, H., Dogan, H., Perez, S., et al., 2014. Efficient reluctance network formulation for electrical machine design using optimization. IEEE Transactions on Magnetics, 50(2):869-872.

[9]Ostovic, V., 1986. A method for evaluation of transient and steady state performance in saturated squirrel cage induction machines. IEEE Transactions on Energy Conversion, 1(3):190-197.

[10]Ostovic, V., 1988. A simplified approach to magnetic equivalent-circuit modeling of induction machines. IEEE Transactions on Industry Applications, 24(2):308-316.

[11]Ostovic, V., 1989. A novel method for evaluation of transient states in saturated electric machines. IEEE Transactions on Industry Applications, 25(1):96-100.

[12]Sewell, P., Bradley, K.J., Clare, J.C., et al., 1999. Efficient dynamic models for induction machines. International Journal of Numerical Modelling: Electronic networks, devices and fields, 12(6):449-464.

[13]Tang, R.Y., 1997. Modern Permanent Magnet Machines: Theory and Design. China Machine Press, Beijing, China, p.473 (in Chinese).

[14]Ugalde, G., Almandoz, G., Poza, J., et al., 2009. Computation of iron losses in permanent magnet machines by multi-domain simulations. 13th European Conference on Power Electronics and Applications, Barcelona, p.1-10.

[15]Wang, X.H., 2011. Permanent Magnet Machines. China Electric Power Press, Beijing, China, p.327 (in Chinese).

[16]Yao, L., 2006. Magnetic Field Modelling of Machine and Multiple Machine Systems Using Dynamic Reluctance Mesh Modelling. PhD Thesis, University of Nottingham, Nottingham, UK.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE