Full Text:   <3253>

CLC number: S19

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2008-12-30

Cited: 2

Clicked: 6553

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2009 Vol.10 No.2 P.142-146

http://doi.org/10.1631/jzus.B0820251


Transient expression of organophosphorus hydrolase to enhance the degrading activity of tomato fruit on coumaphos


Author(s):  Jie-hong ZHAO, De-gang ZHAO

Affiliation(s):  MOE Key Laboratory of Green Pesticide and Agricultural Bioengineering; more

Corresponding email(s):   dgzhao@gzu.edu.cn

Key Words:  Bioremediation, E8 promoter, Organophosphorus hydrolase (OPH), Transient expression


Jie-hong ZHAO, De-gang ZHAO. Transient expression of organophosphorus hydrolase to enhance the degrading activity of tomato fruit on coumaphos[J]. Journal of Zhejiang University Science B, 2009, 10(2): 142-146.

@article{title="Transient expression of organophosphorus hydrolase to enhance the degrading activity of tomato fruit on coumaphos",
author="Jie-hong ZHAO, De-gang ZHAO",
journal="Journal of Zhejiang University Science B",
volume="10",
number="2",
pages="142-146",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0820251"
}

%0 Journal Article
%T Transient expression of organophosphorus hydrolase to enhance the degrading activity of tomato fruit on coumaphos
%A Jie-hong ZHAO
%A De-gang ZHAO
%J Journal of Zhejiang University SCIENCE B
%V 10
%N 2
%P 142-146
%@ 1673-1581
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0820251

TY - JOUR
T1 - Transient expression of organophosphorus hydrolase to enhance the degrading activity of tomato fruit on coumaphos
A1 - Jie-hong ZHAO
A1 - De-gang ZHAO
J0 - Journal of Zhejiang University Science B
VL - 10
IS - 2
SP - 142
EP - 146
%@ 1673-1581
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0820251


Abstract: 
We constructed an expression cassette of the organophosphorus pesticide degrading (opd) gene under the control of the e8 promoter. Then opd was transformed into tomato fruit using an agroinfiltration transient expression system. β-Glucuronidase (GUS) staining, reverse transcription-polymerase chain reaction (RT-PCR), wavelength scanning, and fluorescent reaction were performed to examine the expression of the opd gene and the hydrolysis activity on coumaphos of organophosphorus hydrolase (OPH) in tomato fruit. The results show that the agroinfiltrated tomato fruit-expressed OPH had the maximum hydrolysis activity of about 11.59 U/mg total soluble protein. These results will allow us to focus on breeding transgenic plants that could not only enhance the degrading capability of fruit and but also hold no negative effects on pest control when spraying organophosphorus pesticides onto the seedlings in fields.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Aysal, P., Tiryaki, O., Tuncbilek, A.S., 2004. 14C-dimethoate residues in tomatoes and tomato products. Bull. Environ. Contam. Toxicol., 73(2):351-357.

[2] Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2):248-254.

[3] Deikman, J., Kline, R., Fischer, R.L., 1992. Organization of ripening and ethylene regulatory regions in a fruit-specific promoter from tomato (Lycopersicon esculentum). Plant Physiol., 100(4):2013-2017.

[4] Deikman, J., Xu, R.L., Kneissl, M.L., Ciardi, J.A., Kim, K.N., Pelah, D., 1998. Separation of cis elements responsive to ethylene, fruit development, and ripening in the 50-flanking region of the ripening-related E8 gene. Plant Mol. Biol., 37(6):1001-1011.

[5] Di Sioudi, B., Miller, C.E., Lai, K., Grimsley, J.K., Wild, J.R., 1999. Rational design of organophosphate hydrolase for altered substrate specificities. Chem. Biol. Interact., 119-120(1):211-223.

[6] Dumas, D.P., Caldwell, S.R., Wild, J.R., Raushel, F.M., 1989. Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J. Biol. Chem., 264(33):19659-19665.

[7] Eddleston, M., Phillips, M.R., 2004. Self poisoning with pesticides. BMJ, 328(7430):42-44.

[8] Harcourt, R.L., Horne, I., Sutherland, T.D., Hammock, B.D., Russell, R.J., Oakeshott, J.G., 2002. Development of a simple and sensitive fluorimetric method for isolation of coumaphos-hydrolysing bacteria. Lett. Appl. Microbiol., 34(4):263-268.

[9] Harper, L.L., McDaniel, C.S., Miller, C.E., Wild, J.R., 1988. Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. ATCC contain identical opd Genes. Appl. Environ. Microbiol., 54(10):2586-2589.

[10] Kneissl, M.L., Deikman, J., 1996. The tomato E8 gene influences ethylene biosynthesis in fruit but not in flowers. Plant Physiol., 112(2):537-547.

[11] Kolakowski, J.E., DeFrank, J.J., Harvey, S.P., Szafraniec, L.L., Beaudry, W.T., Lai, K., Wild, J.R., 1997. Enzymatic hydrolysis of the chemical warfare agent VX and its neurotoxic analogues by organophosphorus hydrolase. Biocatal. Bioeng., 15(4):297-312.

[12] Lan, W.S., Gu, J.D., Zang, J.L., Shen, B.C., Jiang, H., Mulchandanic, A., Chen, W., Qiao, C.L., 2006. Coexpression of two detoxifying pesticide-degrading enzymes in a genetically engineered bacterium. International Biodeterioration & Biodegradation, 58(2):70-76.

[13] Munnecke, D.M., Hsieh, D.P., 1976. Pathways of microbial metabolism of parathion. Appl. Environ. Microbiol., 31(1):63-69.

[14] Nie, J.Y., Cong, P.H., Yang, Z.F., Li, J., Zhang, H.J., 2005. Primary report of apple pesticide residues in China. Chin. Agric. Sci. Bull., 21(10):88-90 (in Chinese).

[15] Orzaez, D., Mirabel, S., Wieland, W.H., Granell, A., 2006. Agroinjection of tomato fruits: a tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol., 140(1):3-11.

[16] Picó, Y., Kozmutza, C., 2007. Evaluation of pesticide residue in grape juices and the effect of natural antioxidants on their degradation rate. Anal. Bioanal. Chem., 389(6): 1805-1814.

[17] Pinkerton, T.S., Howard, J.A., Wild, J.R., 2008. Genetically engineered resistance to organophosphate herbicides provides a new scoreable and selectable marker system for transgenic plants. Mol. Breeding., 21(1):27-36.

[18] Shimazu, M., Mulchandani, A., Chen, W., 2001. Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by agenetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase. Biotechnol. Bioeng., 76(4):318-324.

[19] Spolaore, S., Trainotti, L., Casadoro, G., 2001. A simple protocol for transient gene expression in ripe fleshy fruit mediated by Agrobacterium. J. Exp. Bot., 52(357):845-850.

[20] Takayama, K., Suye, S., Kuroda, K., Ueda, M., Kitaguchi, T., Tsuchiyama, K., Fukuda, T., Chen, W., Mulchandani, A., 2006. Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae. Biotechnol. Prog., 22(4): 939-943.

[21] Zhang, R.F., Cui, Z.L., Zhang, X.Z., Jiang, J.D., Gu, J.D., Li, S.P., 2006. Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation, 17(5):465-472.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE