CLC number: R394-3
On-line Access: 2015-10-03
Received: 2014-11-19
Revision Accepted: 2015-06-08
Crosschecked: 2015-07-09
Cited: 1
Clicked: 4411
Ning Zhang, Jing Jiang, Yan-li Yang, Zhi-he Wang. Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit[J]. Journal of Zhejiang University Science B, 2015, 16(10): 845-856.
@article{title="Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit",
author="Ning Zhang, Jing Jiang, Yan-li Yang, Zhi-he Wang",
journal="Journal of Zhejiang University Science B",
volume="16",
number="10",
pages="845-856",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400319"
}
%0 Journal Article
%T Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit
%A Ning Zhang
%A Jing Jiang
%A Yan-li Yang
%A Zhi-he Wang
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 10
%P 845-856
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400319
TY - JOUR
T1 - Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit
A1 - Ning Zhang
A1 - Jing Jiang
A1 - Yan-li Yang
A1 - Zhi-he Wang
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 10
SP - 845
EP - 856
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400319
Abstract: In this study, we produced tomato plants overexpressing an invertase inhibitor gene (Sly-INH) from tomato, using a simple and efficient transient transformation system. Compared with control plants, the expression of Sly-INH was highly upregulated in Sly-INH overexpressing plants, as indicated by real-time polymerase chain reaction (PCR). Physiological analysis revealed that Sly-INH inhibited the activity of cell wall invertase (CWIN), which increased sugar accumulation in tomato fruit. Furthermore, Sly-INH mediated sucrose metabolism by regulating CWIN activity. Our results suggest that invertase activity is potentially regulated by the Sly-INH inhibitor at the post-translational level, and they demonstrate that the transient transformation system is an effective method for determining the functions of genes in tomato.
[1]Bate, N.J., Niu, X.P., Wang, Y.W., et al., 2004. An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development. Plant Physiol., 134(1):246-254.
[2]Baxter, C., Carrari, F., Bauke, A., et al., 2005. Fruit carbohydrate metabolism in an introgression line of tomato with increased fruit soluble solids. Plant Cell Physiol., 46(3): 425-437.
[3]Biemelt, S., Sonnewald, U., 2006. Plant-microbe interactions to probe regulation of plant carbon metabolism. J. Plant Physiol., 163(3):307-318.
[4]Brummell, D.A., Chen, R.K., Harris, J.C., et al., 2011. Induction of vacuolar invertase inhibitor mRNA in potato tubers contributes to cold-induced sweetening resistance and includes spliced hybrid mRNA variants. J. Exp. Bot., 62(10):3519-3534.
[5]Chourey, P.S., Jain, M., Li, Q.B., et al., 2006. Genetic control of cell wall invertases in developing endosperm of maize. Planta, 223(2):159-167.
[6]Davies, J.N., Hobson, G.E., 1981. The constituents of the tomato fruit—the influence of environment, nutrition, and genotype. Crit. Rev. Food Sci. Nutr., 15(3):205-280.
[7]Fridman, E., Zamir, D., 2003. Functional divergence of a syntenic invertase gene family in tomato, potato, and Arabidopsis. Plant Physiol., 131(2):603-609.
[8]Fridman, E., Carrari, F., Liu, Y.S., et al., 2004. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science, 305(5691):1786-1789.
[9]Gibon, Y., Blaesing, O.E., Hannemann, J., et al., 2004. A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell, 16(12):3304-3325.
[10]Godt, D.E., Roitsch, T., 1997. Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in establishing and maintaining sink metabolism. Plant Physiol., 115(1):273-282.
[11]Greiner, S., Krausgrill, S., Rausch, T., 1998. Cloning of a tobacco apoplasmic invertase inhibitor. Proof of function of the recombinant protein and expression analysis during plant development. Plant Physiol., 116(2):733-774.
[12]Greiner, S., Rausch, T., Sonnewald, U., et al., 1999. Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers. Nat. Biotechnol., 17(7):708-711.
[13]Greiner, S., Koster, U., Lauer, K., et al., 2000. Plant invertase inhibitors: expression in cell culture and during plant development. Aust. J. Plant Physiol., 27(9):807-814.
[14]Hajirezaei, M.R., Takahata, Y., Trethewey, R.N., et al., 2000. Impact of elevated and apoplastic invertase activity on carbon metabolism during potato tuber development. J. Exp. Bot., 51(Suppl. 1):439-445.
[15]Hanson, J., Smeekens, S., 2009. Sugar perception and signaling— an update. Curr. Opin. Plant Biol., 12(5):562-567.
[16]Herbers, K., Meuwly, P., Frommer, W.B., et al., 1996. Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell, 8(5):793-803.
[17]Hothorn, M., Wolf, S., Aloy, P., et al., 2004. Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell, 16(12):3437-3447.
[18]Hothorn, M., Ende, W.V., Lammensc, W., et al., 2010. Structural insights into the pH-controlled targeting of plant cell wall invertase by a specific inhibitor protein. PNAS, 107(40):17427-17432.
[19]Huang, L.F., Bocock, P.N., Davis, J.M., et al., 2007. Regulation of invertase: a suite of transcriptional and post-transcriptional mechanisms. Funct. Plant Biol., 34(6):499-507.
[20]Janssen, B.J., Gardner, R.C., 1990. Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol. Biol., 14(1):61-72.
[21]Jin, Y., Ni, D.A., Ruan, Y.L., 2009. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell, 21(7):2072-2089.
[22]Kapila, J., Rycke, R.D., van Montagu, M., 1997. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci., 122(1):101-108.
[23]Klann, E.M., Hall, B., Bennett, A.B., 1996. Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in tomato fruit. Plant Physiol., 112(3):1321-1330.
[24]Klee, H.J., Giovannoni, J.J., 2011. Genetics and control of tomato fruit ripening and quality attributes. Annu. Rev. Genet., 45(1):41-59.
[25]Kusch, U., Harms, K., Rausch, T., et al., 2009. Inhibitors of plant invertases do not affect the structurally related enzymes of fructan metabolism. New Phytol., 181(3):601-612.
[26]le Roy, K., Vergauwen, R., Struyf, T., et al., 2013. Understanding the role of defective invertases in plants: tobacco Nin88 fails to degrade sucrose. Plant Physiol., 161(4):1670-1681.
[27]Link, M., Rausch, T., Greiner, S., 2004. In Arabidopsis thaliana, the invertase inhibitors AtC/VIF1 and 2 exhibit distinct target enzyme specificities and expression profiles. FEBS Lett., 573(1-3):105-109.
[28]McLaughlin, J.E., Boyer, J.S., 2004. Sugar-responsive gene expression, invertase activity, and senescence in aborting maize ovaries at low water potentials. Ann. Bot., 94(5):675-689.
[29]Orzaez, D., Sophie, M., Willemien, H., et al., 2006. Agroinjection of tomato fruits: a tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol., 140(l):3-11.
[30]Palmer, W.M., Ru, L., Jin, Y., et al., 2015. Tomato ovary-to-fruit transition is characterized by a developmental shift of cell wall invertase and its inhibitor mRNAs from a dispersed expression to a phloem-specific pattern with the encoded proteins localized to sieve elements. Mol. Plant, 8(2):315-328.
[31]Pressey, R., 1966. Separation and properties of potato invertase and invertase inhibitor. Arch. Biochem. Biophys., 113(3):667-674.
[32]Rausch, T., Greiner, S., 2004. Plant protein inhibitors of invertases. Biochim. Biophys. Acta, 1696(2):253-261.
[33]Reca, I.B., Brutus, A., D'Avino, R., et al., 2008. Molecular cloning, expression and characterization of a novel apoplastic invertase inhibitor from tomato (Solanum lycopersicum) and its use to purify a vacuolar invertase. Biochimie, 90(11-12):1611-1623.
[34]Roitsch, T., Balibrea, M.E., Hofmann, M., et al., 2003. Extracellular invertase: key metabolic enzyme and PR protein. J. Exp. Bot., 54(382):513-524.
[35]Schaarschmidt, S., Roitsch, T., Hause, B., 2006. Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots. J. Exp. Bot., 57(15):4015-4023.
[36]Scharte, J., Schon, H., Weis, E., 2005. Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant Cell Environ., 28(11):1421-1435.
[37]Schwimmer, S., Makower, R.U., Rorem, E.S., 1961. Invertase and invertase inhibitor in potato. Plant Physiol., 36(3):313-316.
[38]Sturm, A., 1999. Invertases: primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol., 121(1):1-8.
[39]Tauzin, A.S., Sulzenbacher, G., Lafond, M., et al., 2014. Functional characterization of a vacuolar invertase from Solanum lycopersicum: post-translational regulation by N-glycosylation and a proteinaceous inhibitor. Biochimie, 101:39-49.
[40]Tomlinson, K.L., McHugh, S., Labbe, H., et al., 2004. Evidence that the hexose-to-sucrose ratio does not control the switch to storage product accumulation in oilseeds: analysis of tobacco seed development and effects of overexpressing apoplastic invertase. J. Exp. Bot., 55(406):2291-2303.
[41]Weil, M., Krausgrill, S., Schuster, A., et al., 1994. A 17-kDa Nicotiana tabacum cell-wall peptide acts as an in-vitro inhibitor of the cell-wall isoform of acid invertase. Planta, 193(3):438-445.
[42]Wroblewski, T., Tomczak, A., Michelmore, R., 2005. Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato, and Arabidopsis. Plant Biotechnol. J., 3(2):259-273.
[43]Yelle, S., Chetelat, R.T., Dorais, M., et al., 1991. Sink metabolism in tomato fruit, genetic and biochemical analysis of sucrose accumulation. Plant Physiol., 95(4):1026-1035.
[44]Zanor, M.I., Osorio, S., Nunes-Nesi, A., et al., 2009. RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol., 150(3):1204-1218.
[45]Zrenner, R., Salanoubat, M., Willmitzer, L., et al., 1995. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J., 7(1):97-107.
Open peer comments: Debate/Discuss/Question/Opinion
<1>