CLC number: Q942
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2011-04-28
Cited: 7
Clicked: 6541
Cheng Qin, Ke-ke Yi, Ping Wu. Ammonium affects cell viability to inhibit root growth in Arabidopsis[J]. Journal of Zhejiang University Science B, 2011, 12(6): 477-484.
@article{title="Ammonium affects cell viability to inhibit root growth in Arabidopsis",
author="Cheng Qin, Ke-ke Yi, Ping Wu",
journal="Journal of Zhejiang University Science B",
volume="12",
number="6",
pages="477-484",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1000335"
}
%0 Journal Article
%T Ammonium affects cell viability to inhibit root growth in Arabidopsis
%A Cheng Qin
%A Ke-ke Yi
%A Ping Wu
%J Journal of Zhejiang University SCIENCE B
%V 12
%N 6
%P 477-484
%@ 1673-1581
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000335
TY - JOUR
T1 - Ammonium affects cell viability to inhibit root growth in Arabidopsis
A1 - Cheng Qin
A1 - Ke-ke Yi
A1 - Ping Wu
J0 - Journal of Zhejiang University Science B
VL - 12
IS - 6
SP - 477
EP - 484
%@ 1673-1581
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000335
Abstract: Ammonium (NH4+) is an important form of nitrogen nutrient for most plants, yet is also a stressor for many of them. However, the primary events of NH4+ toxicity at the cellular level are still unclear. Here, we showed that NH4+ toxicity can induce the root cell death in a temporal pattern which primarily occurs in the cells of root maturation and elongation zones, and then spreads to the cells in the meristem and root cap. The results from the NH4+-hypersensitive mutant hsn1 further confirmed our findings. Taken together, NH4+ toxicity inhibits primary root growth by inhibiting cell elongation and division and inducing root cell death.
[1]Bais, H.P., Vepachedu, R., Gilroy, S., Callaway, R.M., Vivanco, J.M., 2003. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 301(5638):1377-1380.
[2]Britto, D.T., Kronzucker, H.J., 2002. NH4+ toxicity in higher plants: a critical review. J. Plant Physiol., 159(6):567-584.
[3]Colon-Carmona, A., You, R., Haimovitch-Gal, T., Doerner, P., 1999. Technical advance: spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J., 20(4):503-508.
[4]Fukaki, H., Wysocka-Diller, J., Kato, T., Fujisawa, H., Benfey, P.N., Tasaka, M., 1998. Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J., 14(4):425-430.
[5]Jefferson, R.A., Kavanagh, T.A., Bevan, M.W., 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J., 6(13):3901-3907.
[6]Luschnig, C., Gaxiola, R.A., Grisafi, P., Fink, G.R., 1998. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev., 12(14):2175-2187.
[7]Marschner, H., 1995. Mineral Nutrition of Higher Plants. Academic Press, London.
[8]Miura, K., Rus, A., Sharkhuu, A., Yokoi, S., Karthikeyan, A.S., Raghothama, K.G., Baek, D., Koo, Y.D., Jin, J.B., Bressan, R.A., et al., 2005. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. PNAS, 102(21):7760-7765.
[9]Qin, C., Qian, W., Wang, W., Wu, Y., Yu, C., Jiang, X., Wang, D., Wu, P., 2008. GDP-mannose pyrophosphorylase is a genetic determinant of ammonium sensitivity in Arabidopsis thaliana. PNAS, 105(47):18308-18313.
[10]Reisenauer, H.M., 1978. Absorption and Utilization of Ammonium Nitrogen by Plants. In: Nielsen, J.R., MacDonald, J.G. (Eds.), Nitrogen in the Environment. Academic Press, New York, Vol. 2, p.157-189.
[11]Rubio, V., Linhares, F., Solano, R., Martin, A.C., Iglesias, J., Leyva, A., Paz-Ares, J., 2001. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev., 15(16):2122-2133.
[12]Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P., et al., 1999. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell, 99(5):463-472.
[13]Sánchez-Calderón, L., López-Bucio, J., Chacón-López, A., Cruz-Ramírez, A., Nieto-Jacobo, F., Dubrovsky, J.G., Herrera-Estrella, L., 2005. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol., 46(1):174-184.
[14]van Breemen, N., van Dijk, H.F., 1988. Ecosystem effects of atmospheric deposition of nitrogen in the Netherlands. Environ. Pollut., 54(3-4):249-274.
[15]van den Berg, C., Willemsen, V., Hage, W., Weisbeek, P., Scheres, B., 1995. Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature, 378(6552):62-65.
[16]Willemsen, V., Wolkenfelt, H., de Vrieze, G., Weisbeek, P., Scheres, B., 1998. The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development, 125(3):521-531.
[17]Wysocka-Diller, J.W., Helariutta, Y., Fukaki, H., Malamy, J.E., Benfey, P.N., 2000. Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development, 127(3):595-603.
[18]Zhang, H., Forde, B.G., 1998. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 279(5349):407-409.
Open peer comments: Debate/Discuss/Question/Opinion
<1>