CLC number: R734.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2011-09-15
Cited: 2
Clicked: 7187
Kai Wang, Min Zhang, Ying-ying Qian, Zhe-yuan Ding, Jun-hui Lv, Hua-hao Shen. Imbalanced expression of mitogen-activated protein kinase phosphatase-1 and phosphorylated extracellular signal-regulated kinases in lung squamous cell carcinoma[J]. Journal of Zhejiang University Science B, 2011, 12(10): 828-834.
@article{title="Imbalanced expression of mitogen-activated protein kinase phosphatase-1 and phosphorylated extracellular signal-regulated kinases in lung squamous cell carcinoma",
author="Kai Wang, Min Zhang, Ying-ying Qian, Zhe-yuan Ding, Jun-hui Lv, Hua-hao Shen",
journal="Journal of Zhejiang University Science B",
volume="12",
number="10",
pages="828-834",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1100165"
}
%0 Journal Article
%T Imbalanced expression of mitogen-activated protein kinase phosphatase-1 and phosphorylated extracellular signal-regulated kinases in lung squamous cell carcinoma
%A Kai Wang
%A Min Zhang
%A Ying-ying Qian
%A Zhe-yuan Ding
%A Jun-hui Lv
%A Hua-hao Shen
%J Journal of Zhejiang University SCIENCE B
%V 12
%N 10
%P 828-834
%@ 1673-1581
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1100165
TY - JOUR
T1 - Imbalanced expression of mitogen-activated protein kinase phosphatase-1 and phosphorylated extracellular signal-regulated kinases in lung squamous cell carcinoma
A1 - Kai Wang
A1 - Min Zhang
A1 - Ying-ying Qian
A1 - Zhe-yuan Ding
A1 - Jun-hui Lv
A1 - Hua-hao Shen
J0 - Journal of Zhejiang University Science B
VL - 12
IS - 10
SP - 828
EP - 834
%@ 1673-1581
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1100165
Abstract: Objective: Mitogen-activated protein kinases (MAPKs) are correlated with a more malignant phenotype in many cancers. This study was designed to evaluate the predictive value of the expression of MAPK phosphatase-1 (MKP-1) and phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), as the key regulatory mechanism of the MAPKs, in lung squamous cell carcinoma (SCC). Methods: We assessed the expressions of MKP-1 and p-ERK1/2 in twenty subjects at different differentiation degree of SCC and five normal lungs by immunohistochemistry and real-time reverse transcriptase polymerase chain reaction (RT-PCR) analysis. Results: Immunohistochemistry and real-time RT-PCR assay showed that the expression of MKP-1 was gradually decreased as tissue type went from normal lung tissues to increasingly undifferentiated carcinoma, and it was negatively correlated with tumor differentiation (P<0.01). However, the expression of p-ERK1/2 or ERK1/2 was gradually increased as tissue type went from normal lung tissues to increasingly undifferentiated carcinoma, and it was positively correlated with tumor differentiation (P<0.01). Conclusions: Our data indicates the relevance of MKP-1 and p-ERK1/2 in SCC as a potential positive and negative prognostic factor. The imbalanced expression of MKP-1 and p-ERK1/2 may play a role in the development of SCC and these two molecules may be new targets for the therapy and prognosis of SCC.
[1]Adeyinka, A., Nui, Y., Cherlet, T., Snell, L., Watson, P.H., Murphy, L.C., 2002. Activated mitogen-activated protein kinase expression during human breast tumorigenesis and breast cancer progression. Clin. Cancer Res., 8(6):1747-1753.
[2]Bermudez, O., Pages, G., Gimond, C., 2010. The dual-specificity MAP kinase phosphatases: critical roles in development and cancer. Am. J. Physiol. Cell Physiol., 299(2):C189-C202.
[3]Blackhall, F.H., Pintilie, M., Michael, M., Leighl, N., Feld, R., Tsao, M.S., Shepherd, F.A., 2003. Expression and prognostic significance of kit, protein kinase B, and mitogen-activated protein kinase in patients with small cell lung cancer. Clin. Cancer Res., 9(6):2241-2247.
[4]Bogoyevitch, M.A., 2006. The isoform-specific functions of the c-Jun N-terminal kinases (JNKs): differences revealed by gene targeting. Bioessays, 28(9):923-934.
[5]Bogoyevitch, M.A., Arthur, P.G., 2008. Inhibitors of c-Jun N-terminal kinases: JuNK no more? Biochim. Biophys. Acta, 1784(1):76-93.
[6]Chang, L.F., Karin, M., 2001. Mammalian MAP kinase signalling cascades. Nature, 410(6824):37-40.
[7]Chen, H., Zhu, G., Li, Y., Padia, R.N., Dong, Z., Pan, Z.K., Liu, K., Huang, S., 2009. Extracellular signal-regulated kinase signaling pathway regulates breast cancer cell migration by maintaining slug expression. Cancer Res., 69(24):9228-9235.
[8]Denkert, C., Schmitt, W.D., Berger, S., Reles, A., Pest, S., Siegert, A., Lichtenegger, W., Dietel, M., Hauptmann, S., 2002. Expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) in primary human ovarian carcinoma. Int. J. Cancer, 102(5):507-513.
[9]Dickinson, R.J., Keyse, S.M., 2006. Diverse physiological functions for dual-specificity MAP kinase phosphatases. J. Cell Sci., 119(22):4607-4615.
[10]Dunn, K.L., Espino, P.S., Drobic, B., He, S., Davie, J.R., 2003. The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochem. Cell Biol., 83(1):1-14.
[11]Eralp, Y., Derin, D., Ozluk, Y., Yavuz, E., Guney, N., Saip, P., Muslumanoglu, M., Igci, A., Kücücük, S., Dincer, M., Aydiner, A., Topuz, E., 2008. MAPK overexpression is associated with anthracycline resistance and increased risk for recurrence in patients with triple-negative breast cancer. Ann. Oncol., 19(4):669-674.
[12]Farooq, A., Zhou, M.M., 2004. Structure and regulation of MAPK phosphatases. Cell. Signal., 16(7):769-779.
[13]Gailhouste, L., Ezan, F., Bessard, A., Frémin, C., Rageul, J., Langouët, S., Baffet, G., 2010. RNAi-mediated MEK1 knock-down prevents ERK1/2 activation and abolishes human hepatocarcinoma growth in vitro and in vivo. Int. J. Cancer, 126(6):1367-1377.
[14]Greenberg, A.K., Basu, S., Hu, J., Yie, T.A., Tchou-Wong, K.M., Rom, W.N., Lee, T.C., 2002. Selective p38 activation in human non-small cell lung cancer. Am. J. Respir. Cell Mol. Biol., 26(5):558-564.
[15]Herbst, R.S., Heymach, J.V., Lippman, S.M., 2008. Lung cancer. N. Engl. J. Med., 359(13):1367-1380.
[16]Hu, J.A., Li, Y., Fang, J., 2010. Effect of ERK inhibitor on pulmonary metastasis of inoculated human adenoid cystic carcinoma cells in nude mice. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 109(1):117-123.
[17]Huang, D., Ding, Y., Luo, W.M., Bender, S., Qian, C.N., Kort, E., Zhang, Z.F., VandenBeldt, K., Duesbery, N.S., Resau, J.H., Teh, B.T., 2008. Inhibition of MAPK kinase signaling pathways suppressed renal cell carcinoma growth and angiogenesis in vivo. Cancer Res., 68(1):81-88.
[18]Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Thun, M.J., 2009. Cancer statistics. CA Cancer. J. Clin., 59(4):225-249.
[19]Johnson, G.L., Lapadat, R., 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298(5600):1911-1912.
[20]Mavria, G., Vercoulen, Y., Yeo, M., Paterson, H., Karasarides, M., Marais, R., Bird, D., Marshall, C.J., 2006. ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell, 9(1):33-44.
[21]Moro, L., Arbini, A.A., Marra, E., Greco, M., 2007. Constitutive activation of MAPK/ERK inhibits prostate cancer cell proliferation through upregulation of BRCA2. Int. J. Oncol., 30(1):217-224.
[22]Mukohara, T., Kudoh, S., Yamauchi, S., Kimura, T., Yoshimura, N., Kanazawa, H., Hirataa, K., Wanibuchib, H., Fukushimab, S., Inouec, K., et al., 2003. Expression of epidermal growth factor receptor (EGFR) and downstream-activated peptides in surgically excised non-small-cell lung cancer (NSCLC). Lung Cancer, 41(2):123-130.
[23]Murphy, L.O., Blenis, J., 2006. MAPK signal specificity: the right place at the right time. Trends Biochem. Sci., 31(5):268-275.
[24]Owens, D.M., Keyse, S.M., 2007. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene, 26(22):3203-3213.
[25]Roux, P.P., Blenis, J., 2004. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev., 68(2):320-344.
[26]Serini, S., Trombino, S., Oliva, F., Piccioni, E., Monego, G., Resci, F., Boninsegna, A., Picci, N., Ranelletti, F.O., Calviello, G., 2008. Docosahexaenoic acid induces apoptosis in lung cancer cells by increasing MKP-1 and down-regulating p-ERK1/2 and p-p38 expression. Apoptosis, 13(9):1172-1183.
[27]Shaul, Y.D., Seger, R., 2007. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim. Biophys. Acta, 1773(8):1213-1226.
[28]Tsujita, E., Taketomi, A., Gion, T., Kuroda, Y., Endo, K., Watanabe, A., Nakashima, H., Aishima, S., Kohnoe, S., Maehara, Y., 2005. Suppressed MKP-1 is an independent predictor of outcome in patients with hepatocellular carcinoma. Oncology, 69(4):342-347.
[29]Wada, T., Penninger, J.M., 2004. Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 23(16):2838-2849.
[30]Ward, Y., Wang, W., Woodhouse, E., Linnoila, I., Liotta, L., Kelly, K., 2001. Signal pathways which promote invasion and metastasis: critical and distinct contributions of extracellular signal-regulated kinase and Ral-specific guanine exchange factor pathways. Mol. Cell. Biol., 21(17):5958-5969.
[31]Widmann, C., Gibson, S., Jarpe, M.B., Johnson, G.L., 1999. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev., 79(1):143-180.
[32]Wong, H.R., Dunsmore, K.E., Page, K., Shanley, T.P., 2005. Heat shock-mediated regulation of MKP-1. Am. J. Physiol. Cell Physiol., 289(5):C1152-C1158.
Open peer comments: Debate/Discuss/Question/Opinion
<1>