Full Text:   <3986>

CLC number: R58

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-05-26

Cited: 4

Clicked: 8294

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.8 P.735-742

http://doi.org/10.1631/jzus.B1300196


Protective effect of indomethacin in renal ischemia-reperfusion injury in mice*


Author(s):  Sheng-hong Zhu1,2, Li-jia Zhou1, Hong Jiang1, Rong-jun Chen1, Chuan Lin1, Shi Feng1, Juan Jin1, Jiang-hua Chen1, Jian-yong Wu1

Affiliation(s):  1. Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; more

Corresponding email(s):   wujianyong@medmail.com.cn

Key Words:  Non-steroidal anti-inflammatory drug (NSAID), Indomethacin (IMT), Ischemia-reperfusion injury (IRI), Dosage, Protective effect


Sheng-hong Zhu, Li-jia Zhou, Hong Jiang, Rong-jun Chen, Chuan Lin, Shi Feng, Juan Jin, Jiang-hua Chen, Jian-yong Wu. Protective effect of indomethacin in renal ischemia-reperfusion injury in mice[J]. Journal of Zhejiang University Science B, 2014, 15(8): 735-742.

@article{title="Protective effect of indomethacin in renal ischemia-reperfusion injury in mice",
author="Sheng-hong Zhu, Li-jia Zhou, Hong Jiang, Rong-jun Chen, Chuan Lin, Shi Feng, Juan Jin, Jiang-hua Chen, Jian-yong Wu",
journal="Journal of Zhejiang University Science B",
volume="15",
number="8",
pages="735-742",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1300196"
}

%0 Journal Article
%T Protective effect of indomethacin in renal ischemia-reperfusion injury in mice
%A Sheng-hong Zhu
%A Li-jia Zhou
%A Hong Jiang
%A Rong-jun Chen
%A Chuan Lin
%A Shi Feng
%A Juan Jin
%A Jiang-hua Chen
%A Jian-yong Wu
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 8
%P 735-742
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300196

TY - JOUR
T1 - Protective effect of indomethacin in renal ischemia-reperfusion injury in mice
A1 - Sheng-hong Zhu
A1 - Li-jia Zhou
A1 - Hong Jiang
A1 - Rong-jun Chen
A1 - Chuan Lin
A1 - Shi Feng
A1 - Juan Jin
A1 - Jiang-hua Chen
A1 - Jian-yong Wu
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 8
SP - 735
EP - 742
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300196


Abstract: 
Objective: To evaluate the renoprotection effects of non-steroidal anti-inflammatory drugs (NSAIDs) in renal ischemia-reperfusion injury (IRI) and the cyclooxygenase (COX)-1/2 blockade association by indomethacin (IMT) in the mice model. Methods: After the left renal pedicle of mice was clamped, IMT was administrated by intraperitoneal injection with four doses: 1, 3, 5, and 7 mg/kg. Blood and kidney samples were collected 24 h after IRI. The renal functions were assayed by the cytokines and serum creatinine (SCr) using enzyme-linked immunosorbent assay (ELISA) kits. Kidney samples were analyzed by hematoxylin and eosin (H&E) and immunohistochemistry stainings. Results: The mice administered with 5 mg/kg IMT had a marked reduction in SCr and significantly less tubular damage. The tumor necrosis factor α (TNF-α) activity in renal homogenates and interleukin 6 (IL-6) activity in serum had a marked reduction at doses of 5 and 7 mg/kg IMT. The administration of 3 and 5 mg/kg IMT had a marked reduction in the ratio of thromboxane B2 to 6-keto-prostaglandin F. COX-1 and COX-2 stainings were weaker in 5 mg/kg IMT groups than that in the other groups. Conclusions: There was a dose response in the IMT function of renal IRI in mice, and IMT had a protective effect in a certain dose range. The effect of IMT on mice IRI was related to COX-1/2 blockades.

吲哚美辛对小鼠肾缺血再灌注损伤的保护作用

研究目的:在小鼠模型中利用吲哚美辛阻断COX-1/2通路,探讨非甾体类抗炎药对肾缺血再灌注损伤的保护作用。
创新要点:非甾体类抗炎药被认为具有肾毒性,本研究首次在小鼠模型中探讨非甾体类抗炎药对肾缺血再灌注损伤的保护作用。
研究方法:小鼠左侧肾蒂夹闭后,通过腹腔注射不同剂量的吲哚美辛,在肾缺血再灌注损伤24小时后,获取血液和肾脏标本。利用酶联免疫(ELISA)试剂盒测定血清肌酐和细胞因子浓度来评估肾功能,肾组织样本进行苏木精-伊红染色和免疫组化分析。
重要结论:腹腔注射吲哚美辛5mg/kg组的小鼠血清肌酐值与对照组相比显著降低,肾小管损伤也显著减轻(见图1和2);腹腔注射5和7mg/kg吲哚美辛组的小鼠血清肾肿瘤坏死因子-α和白介素-6的浓度显著降低(见图3a和3b);腹腔注射3和5mg/kg吲哚美辛组的小鼠血清血栓素B2与6-酮前列腺素F1α的比值明显降低(见图3c);腹腔注射5mg/kg吲哚美辛组小鼠肾组织COX-1和COX-2染色较弱(见图4)。因此,吲哚美辛对小鼠肾缺血再灌注损伤的作用与其剂量相关,在某个特定的剂量范围内具有肾保护作用。吲哚美辛对小鼠肾缺血再灌注损伤的保护作用与阻断COX-1/2有关。
非甾体类抗炎药;吲哚美辛;缺血再灌注损伤;剂量;保护作用

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Bellomo, R., Auriemma, S., Fabbri, A., 2008. The pathophysiology of cardiac surgery-associated acute kidney injury (CSA-AKI). Int J Artif Organs, 31(2):166-178. 


[2] Bonventre, J.V., Weinberg, J.M., 2003. Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol, 14(8):2199-2210. 


[3] Carnieto, A., Dourado, P.M., Luz, P.L., 2009. Selective cyclooxygenase-2 inhibition protects against myocardial damage in experimental acute ischemia. Clinics, 64(3):245-252. 


[4] Chapman, J.R., O'Connell, P.J., Nankivell, B.J., 2005. Chronic renal allograft dysfunction. J Am Soc Nephrol, 16(10):3015-3126. 


[5] Chertow, G.M., Burdick, E., Honour, M., 2005. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol, 16(11):3365-3370. 


[6] Donnahoo, K.K., Meng, X., Ayala, A., 1999. Early kidney TNF-α expression mediates neutrophil infiltration and injury after renal ischemia-reperfusion. Am J Physiol Regul Integr Comp Physiol, 277(3):R922-R929. 

[7] Feitoza, C.Q., Sanders, H., Cenedeze, M., 2002. Pretreatment with indomethacin protects from acute renal failure following ischemia-reperfusion injury. Transpl Proc, 34(7):2979-2980. 


[8] Feitoza, C.Q., Câmara, N.O., Pinheiro, H.S., 2005. Cyclooxygenase 1 and/or 2 blockade ameliorates the renal tissue damage triggered by ischemia and reperfusion injury. Int Immunopharmacol, 5(1):79-84. 


[9] Feitoza, C.Q., Goncalvs, G.M., Semedo, P., 2008. Inhibition of COX1 and 2 prior to renal ischemia/reperfusion injury decreases the development of fibrosis. Mol Med, 14(11-12):724-730. 


[10] Feitoza, C.Q., Semedo, P., Gonalves, G.M., 2010. Modulation of inflammatory response by selective inhibition of cyclooxygenase-1 and cyclooxygenase-2 in acute kidney injury. Inflamm Res, 59(3):167-175. 


[11] Furtado, N., Beier, U.H., Gorla, S.R., 2008. The effect of indomethacin on systemic and renal hemodynamics in neonatal piglets during experimental endotoxemia. Pediatr Surg Int, 24(8):907-911. 


[12] Hamada, T., Tsuchihashi, S., Avanesyan, A., 2008. Cyclooxygenase-2 deficiency enhances Th2 immune responses and impairs neutrophil recruitment in hepatic ischemia/reperfusion injury. J Immunol, 180(3):1843-1853. 


[13] John, R., Herzenberg, A.M., 2009. Renal toxicity of therapeutic drugs. J Clin Pathol, 62(6):505-515. 


[14] Kehlet, H., 2004. Effect of postoperative pain treatment on outcome-current status and future strategies. Langenbecks Arch Surg, 389(4):244-249. 


[15] Kellum, J.A., Bellomo, R., Ronco, C., 2008. Definition and classification of acute kidney injury. Nephron Clin Pract, 109(4):c182-c187. 


[16] Kinsey, G.R., Li, L., Okusa, M.D., 2008. Inflammation in acute kidney injury. Nephron Exp Nephrol, 109(4):e102-e107. 


[17] Lee, A., Cooper, M.C., Craig, J.C., 2007. Effects of nonsteroidal anti-inflammatory drugs on postoperative renal function in adults with normal renal function. Cochrane Database Syst Rev, (2):CD002765


[18] Levy, E.M., Viscoli, C.M., Horwitz, R.I., 1996. The effect of acute renal failure on mortality. A cohort analysis. JAMA, 275(19):1489-1494. 


[19] Lutz, J., Thrmel, K., Heemann, U., 2010. Anti-inflammatory treatment strategies for ischemia/reperfusion injury in transplantation. J Inflamm, 7:27


[20] McDaid, C., Maund, E., Rice, S., 2010. Paracetamol and selective and non-selective non-steroidal anti-inflammatory drugs (NSAIDs) for the reduction of morphine-related side effects after major surgery: a systematic review. Health Technol Assess, 14(17):1-153. 


[21] Miranda, R.N., Briggs, R.C., Kinney, M.C., 2000. Immunohistochemical detection of cyclin D1 using optimized conditions is highly specific for mantle cell lymphoma and hairy cell leukemia. Modern Pathol, 13(12):1308-1314. 


[22] Otani, Y., Takeyoshi, I., Yoshinari, D., 2007. Effects of the COX-2 inhibitor FK3311 on ischemia—reperfusion injury in the rat lung. J Invest Surg, 20(3):175-180. 


[23] Peeters, P., Terryn, W., Vanholder, R., 2004. Delayed graft function in renal transplantation. Curr Opin Crit Care, 10(6):489-498. 


[24] Perco, P., Pleban, C., Kainz, A., 2007. Gene expression and biomarkers in renal transplant ischemia reperfusion injury. Transpl Int, 20(1):2-11. 


[25] Schiffl, H., Lang, S.M., Fischer, R., 2002. Daily hemodialysis and the outcome of acute renal failure. N Engl J Med, 346(5):305-310. 


[26] Schneider, R., Meusel, M., Renker, S., 2009. Low-dose indomethacin after ischemic acute kidney injury prevents downregulation of Oat1/3 and improves renal outcome. Am J Physiol Renal Physiol, 297(6):F1614-F1621. 


[27] Takeyoshi, I., Sunose, Y., Iwazaki, S., 2001. The effect of a selective cyclooxygenase-2 inhibitor in extended liver resection with ischemia in dogs. J Surg Res, 100(1):25-31. 


[28] Talab, S.S., Emami, H., Elmi, A., 2010. Chronic lithium treatment protects the rat kidney againest ischemia/reperfusion injury: the role of nitric oxide and cyclooxygenase pathways. Eur J Pharmacol, 647(1-3):171-177. 


[29] Wan, X., Fan, L., Hu, B., 2011. Small interfering RNA targeting IKKβ prevents renal ischemia-reperfusion injury in rats. Am J Physiol Renal Physiol, 300(4):F857-F863. 


[30] Ysebaert, D.K., de Greef, K.E., de Beuf, A., 2004. T cells as mediators in renal ischemia/reperfusion injury. Kidney Int, 66(2):491-496. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE