CLC number: Q946.81+8.3
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-03-27
Cited: 2
Clicked: 4451
Tóshiko Takahashi-Íñiguez, Nelly Aburto-Rodríguez, Ana Laura Vilchis-González, María Elena Flores. Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase[J]. Journal of Zhejiang University Science B, 2016, 17(4): 247-261.
@article{title="Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase",
author="Tóshiko Takahashi-Íñiguez, Nelly Aburto-Rodríguez, Ana Laura Vilchis-González, María Elena Flores",
journal="Journal of Zhejiang University Science B",
volume="17",
number="4",
pages="247-261",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500219"
}
%0 Journal Article
%T Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase
%A Tóshiko Takahashi-Íñiguez
%A Nelly Aburto-Rodríguez
%A Ana Laura Vilchis-González
%A María Elena Flores
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 4
%P 247-261
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500219
TY - JOUR
T1 - Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase
A1 - Tóshiko Takahashi-Íñiguez
A1 - Nelly Aburto-Rodríguez
A1 - Ana Laura Vilchis-González
A1 - María Elena Flores
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 4
SP - 247
EP - 261
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500219
Abstract: malate dehydrogenase (MDH) is an enzyme widely distributed among living organisms and is a key protein in the central oxidative pathway. It catalyzes the interconversion between malate and oxaloacetate using NAD+ or NADP+ as a cofactor. Surprisingly, this enzyme has been extensively studied in eukaryotes but there are few reports about this enzyme in prokaryotes. It is necessary to review the relevant information to gain a better understanding of the function of this enzyme. Our review of the data generated from studies in bacteria shows much diversity in their molecular properties, including weight, oligomeric states, cofactor and substrate binding affinities, as well as differences in the direction of the enzymatic reaction. Furthermore, due to the importance of its function, the transcription and activity of this enzyme are rigorously regulated. Crystal structures of MDH from different bacterial sources led to the identification of the regions involved in substrate and cofactor binding and the residues important for the dimer-dimer interface. This structural information allows one to make direct modifications to improve the enzyme catalysis by increasing its activity, cofactor binding capacity, substrate specificity, and thermostability. A comparative analysis of the phylogenetic reconstruction of MDH reveals interesting facts about its evolutionary history, dividing this superfamily of proteins into two principle clades and establishing relationships between MDHs from different cellular compartments from archaea, bacteria, and eukaryotes.
[1]Amarneh, B., Vik, S.B., 2005. Direct transfer of NADH from malate dehydrogenase to complex I in Escherichia coli. Cell Biochem. Biophys., 42(3):251-262.
[2]Bartholomae, M., Meyer, F., Commichau, F., et al., 2014. Complex formation between malate dehydrogenase and isocitrate dehydrogenase from Bacillus subtilis is regulated by tricarboxylic acid cycle metabolites. FEBS J., 281(4):1132-1143.
[3]Bergsma, J., van Dongen, M.B., Konings, W.N., 1982. Purification and characterization of NADH dehydrogenase from Bacillus subtilis. Eur. J. Biochem., 128(1):151-157.
[4]Birktoft, J., Banaszak, L., 1983. The presence of a histidine-aspartic acid pair in the active site of 2-hydroxyacid dehydrogenases. X-ray refinement of cytoplasmic malate dehydrogenase. J. Biol. Chem., 258(1):472-482.
[5]Birktoft, J., Fernley, R., Bradshaw, R., et al., 1982. Amino acid sequence homology among the 2-hydroxy acid dehydrogenases: mitochondrial and cytoplasmic malate dehydrogenases form a homologous system with lactate dehydrogenase. PNAS, 79(20):6166-6170.
[6]Breiter, D.R., Resnik, E., Banaszak, L.J., 1994. Engineering the quaternary structure of an enzyme: construction and analysis of a monomeric form of malate dehydrogenase from Escherichia coli. Protein Sci., 3(11):2023-2032.
[7]Cendrin, F., Chroboczek, J., Zaccai, G., et al., 1993. Cloning, sequencing, and expression in Escherichia coli of the gene coding for malate dehydrogenase of the extremely halophilic archaebacterium Haloarcula marismortui. Biochemistry, 32(16):4308-4313.
[8]Chang, Y.Y., Hung, C.H., Hwang, T.S., et al., 2013. Cloning, overexpression, purification and crystallization of malate dehydrogenase from Thermus thermophilus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 69(Pt 11):1249-1251.
[9]Cohn, D.V., 1956. The oxidation of malic acid by Micrococcus lysodiekticus. J. Biol. Chem., 221(1):413-423.
[10]Dalhus, B., Saarinen, M., Sauer, U.H., et al., 2002. Structural basis for thermophilic protein stability: structures of thermophilic and mesophilic malate dehydrogenases. J. Mol. Biol., 318(3):707-721.
[11]Deutch, C.E., 2013.
[12]Dym, O., Mevarech, M., Sussman, J.L., 1995. Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium. Science, 267(5202):1344-1346.
[13]Eprintsev, A.T., Falaleeva, M.I., Stepanova, I.Y., et al., 2003. Purification and physicochemical properties of malate dehydrogenase from bacteria of the genus Beggiatoa. Biochemistry (Moscow), 68(2):172-176.
[14]Eprintsev, A.T., Falaleeva, M.I., Grabovich, M.I., et al., 2004. Role of malate dehydrogenase isoforms in the regulation of anabolic and catabolic processes in the colorless sulfur bacterium Beggiatoa leptomitiformis D-402. Mikrobiologiia, 73(4):367-371 (in Russian).
[15]Eprintsev, A.T., Falaleeva, M.I., Klimova, M.A., et al., 2006. Physicochemical properties of malate dehydrogenase from the bacterium Rhodopseudomonas palustris strain f8pt. Biochemistry (Moscow), 71(6):692-695.
[16]Eprintsev, A.T., Klimova, M.A., Shikhalieva, K.D., et al., 2008a. Isolation and purification of malate dehydrogenase isoforms from phototrophic purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas palustris. Izv. Akad. Nauk. Ser. Biol., 6:680-687 (in Russian).
[17]Eprintsev, A.T., Klimova, M.A., Falaleeva, M.I., et al., 2008b. Regulation of carbon flows in the tricarboxylic acid cycle-glyoxylate bypass system in Rhodopseudomonas palustris under different growth conditions. Mikrobiologiia, 77(2):132-136 (in Russian).
[18]Eprintsev, A.T., Klimova, M.A., Shikhalieva, K.D., et al., 2009a. Features of structural organization and expression regulation of malate dehydrogenase isoforms from Rhodobacter sphaeroides strain 2R. Biochemistry (Moscow), 74(7):793-799.
[19]Eprintsev, A.T., Falaleeva, M.I., Arabtseva, M.A., et al., 2009b. Structural-functional transformation of the malate dehydrogenase system of the bacterium Sphaerotilus sp. strain D-507 depending on nutritional mode. Biol. Bull., 36(3):220-226.
[20]Farfán, M., Miñana-Galbis, D., Garreta, A., et al., 2010. Malate dehydrogenase: a useful phylogenetic marker for the genus Aeromonas. Syst. Appl. Microbiol., 33(8):427-435.
[21]Fernley, R., Lentz, S., Bradshaw, R., 1981. Malate dehydrogenase: isolation from Escherichia coli and comparison with the eukaryotic mitochondrial and cytoplasmic forms. Biosci. Rep., 1(6):497-507.
[22]Förster-Fromme, K., Jendrossek, D., 2005. Malate:quinone oxidoreductase (MqoB) is required for growth on acetate and linear terpenes in Pseudomonas citronellolis. FEMS Microbiol. Lett., 246(1):25-31.
[23]Fujii, T., Oikawa, T., Muraoka, I., et al., 2007. Crystallization and preliminary X-ray diffraction studies of tetrameric malate dehydrogenase from the novel Antarctic psychrophile Flavobacterium frigidimaris KUC-1. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 63(Pt 11):983-986.
[24]Garrido-Pertierra, A., Martinez, M.C., Fernández, M., et al., 1983. Properties and function of malate enzyme from Pseudomonas putida. Biochimie, 65(11-12):629-635.
[25]Ge, Y.D., Cao, Z.Y., Wang, Z.D., et al., 2010. Identification and biochemical characterization of a thermostable malate dehydrogenase from the mesophile Streptomyces coelicolor A3(2). Biosci. Biotechnol. Biochem., 74(11):2194-2201.
[26]Genda, T., Nakamatsu, T., Ozak, H., 2003. Purification and characterization of malate dehydrogenase from Corynebacterium glutamicum. J. Biosci. Bioeng., 95(6):562-566.
[27]Gietl, C., 1992. Malate dehydrogenase isoenzymes: cellular locations and role in the flow of metabolites between the cytoplasm and cell organelles. Biochim. Biophys. Acta, 1100(3):217-234.
[28]Goward, C.R., Nicholls, D.J., 1994. Malate dehydrogenase: a model for structure, evolution, and catalysis. Protein Sci., 3(10):1883-1888.
[29]Goward, C., Miller, J., Nicholls, D., et al., 1994. A single amino acid mutation enhances the thermal stability of Escherichia coli malate dehydrogenase. Eur. J. Biochem., 224(1):249-255.
[30]Gray, M.W., Burger, G., Lang, B.F., 1999. Mitochondrial evolution. Science, 283(5407):1476-1481.
[31]Grossebüter, W., Hartl, T., Görisch, H., et al., 1986. Purification and properties of malate dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum. Biol. Chem. Hoppe-Seyler, 367(1):457-463.
[32]Hall, M.D., Banaszak, L.J., 1993. Crystal structure of a ternary complex of Escherichia coli malate dehydrogenase citrate and NAD at 1.9 Å resolution. J. Mol. Biol., 232(1):213-222.
[33]Hall, M.D., Levitt, D.G., Banaszak, L.J., 1992. Crystal structure of Escherichia coli malate dehydrogenase. A complex of the apoenzyme and citrate at 1.87 Å resolution. J. Mol. Biol., 226(3):867-882.
[34]Hartl, T., Grossebüter, W., Görisch, H., et al., 1987. Crystalline NAD/NADP-dependent malate dehydrogenase; the enzyme from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biol. Chem. Hoppe-Seyler, 368(1):259-267.
[35]Hashimoto, K., Panchenko, A.R., 2010. Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states. PNAS, 107(47):20352-20357.
[36]Hung, C.H., Hwang, T.S., Chang, Y.Y., et al., 2013. Crystal structures and molecular dynamics simulations of thermophilic malate dehydrogenase reveal critical loop motion for co-substrate binding. PLoS ONE, 8(12):e83091.
[37]Huynen, M.A., Dandekar, T., Bork, P., 1999. Variation and evolution of the citric-acid cycle: a genomic perspective. Trends Microbiol., 7(7):281-291.
[38]Irimia, A., Vellieux, F.M.D., Madern, D., et al., 2004. The 2.9 Å resolution crystal structure of malate dehydrogenase from Archaeoglobus fulgidus: mechanisms of oligomerization and thermal stabilisation. J. Mol. Biol., 335(1):343-356.
[39]Ivanetich, K.M., Hsu, P.H., Wunderlich, K.M., et al., 2006. Microbial source tracking by DNA sequence analysis of the Escherichia coli malate dehydrogenase gene. J. Microbiol. Methods, 67(3):507-526.
[40]Jain, P.K., Jain, V., Singh, A.K., et al., 2013. Evaluation on the responses of succinate dehydrogenase, isocitrate dehydrogenase, malate dehydrogenase and glucose-6-phosphate dehydrogenase to acid shock generated acid tolerance in Escherichia coli. Adv. Biomed. Res., 2(3):75-85.
[41]Jurtshuk, P., Bednarz, A.J., Zei, P., et al., 1969.
[42]Karlberg, O., Canbäck, B., Kurland, C.G., et al., 2001. The dual origin of the yeast mitochondrial proteome. Yeast, 17(3):170-187.
[43]http://dx.doi.org/10.1002/1097-0061(20000930)17:3<170::AID-YEA25>3.0.CO;2-V
[44]Kather, B., Stingl, K., van der Rest, M.E., et al., 2000. Another unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase. J. Bacteriol., 182(11):3204-3209.
[45]Kawakami, R., Sakuraba, H., Goda, S., et al., 2009. Refolding, characterization and crystal structure of (S)-malate dehydrogenase from the hyperthermophilic archaeon Aeropyrum pernix. Biochim. Biophys. Acta, 1794(10):1496-1504.
[46]Kelly, C.A., Nishiyama, M., Ohnishi, Y., et al., 1993. Determinants of protein thermostability observed in the 1.9-Å crystal structure of malate dehydrogenase from the thermophilic bacterium Thermus flavus. Biochemistry, 32(15):3913-3922.
[47]Kim, S.Y., Hwang, K.Y., Kim, S.H., et al., 1999. Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum. J. Biol. Chem., 274(17):11761-11767.
[48]Kono, H., Nishiyama, M., Tanokura, M., et al., 1997. Design of hydrophobic core of Escherichia coli malate dehydrogenase based on the side-chain packing. Pac. Symp. Biocomput., 2:210-221.
[49]Kono, H., Nishiyama, M., Tanokura, M., et al., 1998. Designing the hydrophobic core of Thermus flavus malate dehydrogenase based on the side-chain packing. Protein Eng., 11(1):47-52.
[50]Koonin, E.V., Galperin, M.Y., 2003. Evolution of central metabolic pathways: the playground of non-orthologous gene displacement. In: Sequence-Evolution-Function: Computational Approaches in Comparative Genomics. Kluwer Academic, Boston, Chapter 7.
[51]Kretzschmar, U., Ruckert, A., Jeoung, J.H., et al., 2002. Malate:quinone oxidoreductase is essential for growth on ethanol or acetate in Pseudomonas aeruginosa. Microbiology, 148(12):3839-3847.
[52]Labrou, N.E., Clonis, Y.D., 1997.
[53]Langelandsvik, A.S., Steen, I.H., Birkeland, N.K., et al., 1997. Properties and primary structure of a thermostable
[54]Lee, B.I., Chang, C., Cho, S.J., et al., 2001. Crystal structure of the MJ0490 gene product of the hyperthermophilic archaebacterium Methanococcus jannaschii, a novel member of the lactate/malate family of dehydrogenases. J. Mol. Biol., 307(5):1351-1362.
[55]Madern, D., 2002. Molecular evolution within the
[56]Madern, D., Zaccai, G., 2004. Molecular adaptation: the malate dehydrogenase from the extreme halophilic bacterium Salinibacter ruber behaves like a non-halophilic protein. Biochimie, 86(4-5):295-303.
[57]McAlister-Henn, L., 1988. Evolutionary relationships among the malate dehydrogenases. Trends Biochem. Sci., 13(5):178-181.
[58]Mendoza, A.P., Servín, L., Flores, M.E., 2009. Malate dehydrogenase of Saccharopolyspora erythraea CA340: purification and effect of carbon source on its synthesis. Rev. Lat. Microbiol., 51(1-2):18-22.
[59]Mernik, N., Lewis, R., Kollarova, M., et al., 1998. Characterization and crystallisation of the malate dehydrogenase from Streptomyces aureofaciens. Gen. Physiol. Biophys., 17(Suppl. 1):49-51.
[60]Meyer, F.M., Gerwig, J., Hammer, E., et al., 2011. Physical interactions between tricarboxylic acid cycle enzymes in Bacillus subtilis: evidence for a metabolon. Metab. Eng., 13(1):18-27.
[61]Mikulášová, D., Kollárová, M., Miginiac-Maslow, M., et al., 1998. Purification and characterization of the malate dehydrogenase from Streptomyces aureofaciens. FEMS Microbiol. Lett., 159(2):299-305.
[62]Molenaar, D., van der Rest, M.E., Petrović, S., 1998. Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum. Eur. J. Biochem., 254(2):395-403.
[63]Molenaar, D., van der Rest, M.E., Drysch, A., et al., 2000. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Corynebacterium glutamicum. J. Bacteriol., 182(24):6884-6891.
[64]Musrati, R.A., Kollárová, M., Mernik, N., et al., 1998. Malate dehydrogenase: distribution, function and properties. Gen. Physiol. Biophys., 17(3):193-210.
[65]Naterstad, K., Lauvrak, V., Siverag, R., 1996. Malate dehydrogenase from the mesophile Chlorobium vibrioforme and from the mild thermophile Chlorobium tepidum: molecular cloning, construction of a hybrid, and expression in Escherichia coli. J. Bacteriol., 178(24):7047-7052.
[66]Nicholls, D., Miller, J., Scawen, M., et al., 1992. The importance of arginine 102 for the substrate specificity of Escherichia coli malate dehydrogenase. Biochem. Biophys. Res. Commun., 189(2):1057-1062.
[67]Nishiyama, M., Matsubara, N., Yamamoto, K., et al., 1986. Nucleotide sequence of the malate dehydrogenase gene of Thermus flavus and its mutation directing an increase in enzyme activity. J. Biol. Chem., 261(30):14178-14183.
[68]Nishiyama, M., Shimada, K., Horinouchi, S., et al., 1991. Role of threonine 190 in modulating the catalytic function of malate dehydrogenase from a thermophile Thermus flavus. J. Biol. Chem., 266(22):14294-14299.
[69]Nishiyama, M., Birktoft, J.J., Beppu, T., 1993. Alteration of coenzyme specificity of malate dehydrogenase from Thermus flavus by site-directed mutagenesis. J. Biol. Chem., 268(7):4656-4660.
[70]Nishiyama, M., Kinoshita, M., Kudo, H., et al., 1996. Enhancement of the turnover number of thermostable malate dehydrogenase by deleting hydrogen bonds around the catalytic site. Biochem. Biophys. Res. Commun., 225(3):844-848.
[71]Oh, T.J., Kim, I.G., Park, S.Y., et al., 2002. NAD-dependent malate dehydrogenase protects against oxidative damage in Escherichia coli K-12 through the action of oxaloacetate. Environ. Toxicol. Pharmacol., 11(1):9-14.
[72]Öhman, R., Ridell, M., 1996. Purification and characterisation of isocitrate dehydrogenase and malate dehydrogenase from Mycobacterium tuberculosis and evaluation of their potential as suitable antigens for the serodiagnosis of tuberculosis. Tuber. Lung Dis., 77(5):454-461.
[73]Park, H.S., Kilbane II, J.J., 2004. Gene expression studies of Thermus thermophilus promoters PdnaK, ParG and Pscs-mdh. Lett. Appl. Microbiol., 38(5):415-422.
[74]Park, S.J., Cotter, P.A., Gunsalus, R.P., 1995. Regulation of malate dehydrogenase (mdh) gene expression in Escherichia coli in response to oxygen, carbon, and heme availability. J. Bacteriol., 177(22):6652-6656.
[75]Pitson, S.M., Mendz, G.L., Srinivasan, S., et al., 1999. The tricarboxylic acid cycle of Helicobacter pylori. Eur. J. Biochem., 260(1):258-267.
[76]Rolstad, A.K., Howland, E., Sirevåg, R., 1988. Malate dehydrogenase from the thermophilic green bacterium Chloroflexus aurantiacus: purification, molecular weight, amino acid composition, and partial amino acid sequence. J. Bacteriol., 170(7):2947-2953.
[77]Sidhu, N.S., Delbaere, L.T., Sheldrick, G.M., 2011. Structure of a highly NADP+-specific isocitrate dehydrogenase. Acta Cryst., D67(Pt 10):856-869.
[78]Singh, R., Lemire, J., Mailloux, R.J., et al., 2008. A novel strategy involved anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network. PLoS ONE, 3(7):e2682.
[79]Smith, K., Sundaram, T.K., Kernick, M., 1984. Malate dehydrogenases from actinomycetes: structural comparison of Thermoactinomyces enzyme with other actinomycete and Bacillus enzymes. J. Bacteriol., 157(2):684-687.
[80]Sundaram, T.K., Wright, I.P., Wilkinson, A.E., 1980. Malate dehydrogenase from thermophilic and mesophilic bacteria. Molecular size, subunit structure, amino acid composition, immunochemical homology, and catalytic activity. Biochemistry, 19(10):2017-2022.
[81]Tayeh, M.A., Madigan, M.T., 1987. Malate dehydrogenase in phototrophic purple bacteria: purification, molecular weight, and quaternary structure. J. Bacteriol., 169(9):4196-4202.
[82]Thompson, H., Tersteegen, A., Thauer, R.K., et al., 1998. Two malate dehydrogenases in Methanobacterium thermoautotrophicum. Arch. Microbiol., 170(1):38-42.
[83]Tomita, T., Fushinobu, S., Kuzuyama, T., et al., 2005. Crystal structure of NAD-dependent malate dehydrogenase complexed with NADP(H). Biochem. Biophys. Res. Comm., 334(2):613-618.
[84]van der Rest, M.E., Frank, C., Molenaar, D., 2000. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli. J. Bacteriol., 182(24):6892-6899.
[85]van Kuijk, B.L.M., Stams, A.J.M., 1996. Purification and characterization of malate dehydrogenase from the syntrophic propionate-oxidizing bacterium strain MPOB. FEMS Microbiol. Lett., 144(2-3):141-144.
[86]Vogel, R.F., Entian, K.D., Mecke, D., 1987. Cloning and sequence of the mdh structural gene of Escherichia coli coding for malate dehydrogenase. Arch. Microbiol., 149(1):36-42.
[87]Wang, Z.D., Wang, B.J., Ge, Y.D., et al., 2011. Expression and identification of a thermostable malate dehydrogenase from multicellular prokaryote Streptomyces avermitilis MA-4680. Mol. Biol. Rep., 38(3):1629-1636.
[88]Welch, T.J., Bartlett, D.H., 1997. Cloning, sequencing and overexpression of the gene encoding malate dehydrogenase from the deep-sea bacterium Photobacterium species strain SS9. Biochim. Biophys. Acta, 1350(1):41-46.
[89]Wilks, H.M., Hart, K.W., Feeney, R., et al., 1988. A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework. Science, 242(4885):1541-1544.
[90]Wise, D.J., Anderson, C.D., Anderson, B.M., 1997. Purification and kinetic characterization of Haemophilus parasuis malate dehydrogenase. Arch. Biochem. Biophys., 344(1):176-183.
[91]Wu, H., Li, Z.M., Zhou, L., et al., 2007. Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture. Appl. Environ. Microbiol., 73(24):7837-7843.
[92]Wynne, S.A., Nicholls, D.J., Scawen, M.D., et al., 1996. Tetrameric malate dehydrogenase from a thermophilic Bacillus: cloning, sequence and overexpression of the gene encoding the enzyme and isolation and characterization of the recombinant enzyme. Biochem. J., 317(1):235-245.
[93]Yano, T., Li, L.S., Weinstein, E., et al., 2006. Steady-state kinetics and inhibitory action of antitubercular phenothiazines on Mycobacterium tuberculosis type-II NADH-menaquinone oxidoreductase (NDH-2). J. Biol. Chem., 281(17):11456-11463.
[94]Yennaco, L.J., Hu, Y., Holden, J.F., 2007. Characterization of malate dehydrogenase from the hyperthermophilic archaeon Pyrobaculum islandicum. Extremophiles, 11(5):741-746.
Open peer comments: Debate/Discuss/Question/Opinion
<1>