CLC number: Q946
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-08-16
Cited: 0
Clicked: 4598
Eun-hye Park, Won-young Bae, Jae-yeon Kim, Kee-tae Kim, Hyun-dong Paik. Antimelanogenic effects of Inula britannica flower petal extract fermented by Lactobacillus plantarum KCCM 11613P[J]. Journal of Zhejiang University Science B, 2017, 18(9): 816-824.
@article{title="Antimelanogenic effects of Inula britannica flower petal extract fermented by Lactobacillus plantarum KCCM 11613P",
author="Eun-hye Park, Won-young Bae, Jae-yeon Kim, Kee-tae Kim, Hyun-dong Paik",
journal="Journal of Zhejiang University Science B",
volume="18",
number="9",
pages="816-824",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600234"
}
%0 Journal Article
%T Antimelanogenic effects of Inula britannica flower petal extract fermented by Lactobacillus plantarum KCCM 11613P
%A Eun-hye Park
%A Won-young Bae
%A Jae-yeon Kim
%A Kee-tae Kim
%A Hyun-dong Paik
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 9
%P 816-824
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600234
TY - JOUR
T1 - Antimelanogenic effects of Inula britannica flower petal extract fermented by Lactobacillus plantarum KCCM 11613P
A1 - Eun-hye Park
A1 - Won-young Bae
A1 - Jae-yeon Kim
A1 - Kee-tae Kim
A1 - Hyun-dong Paik
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 9
SP - 816
EP - 824
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600234
Abstract: The inhibitory effects of Lactobacillus plantarum-fermented and non-fermented Inula britannica extracts on the tyrosinase activity were comparatively investigated to examine whether and how they improve the whitening activity, and the contents of total flavonoids and polyphenolics as bioactive compounds were determined. The skin whitening activity using in vitro or ex vivo tyrosinase and
[1]Bai, N., Zhou, Z., Zhu, N., et al., 2005. Antioxidative flavonoids from the flower of Inula britannica. J. Food Lipids, 12(2):141-149.
[2]Bourdichon, F., Casaregola, S., Farrok, C., et al., 2012. Food fermentations: microorganisms with technological beneficial use. Int. J. Food Microbiol., 154(3):87-97.
[3]Chakraborty, A.K., Platt, J.T., Kim, K.K., et al., 1996. Polymerization of 5,6-dihydroxyindole-2-carboxylic acid to melanin by the pmel 17/Silver locus protein. Eur. J. Biochem., 236(1):180-188.
[4]Chan, Y.Y., Kim, K.H., Cheah, S.H., 2011. Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. J. Ethnopharmacol., 137(3):1183-1188.
[5]Dong, J., Zhao, L., Cai, L., et al., 2014. Antioxidant activities and phenolics of fermented Bletilla formosana with eight plant pathogen fungi. J. Biosci. Bioeng., 118(4):396-399.
[6]Dueñas, M., Fernández, D., Hernández, T., et al., 2005. Bioactive phenolic compounds of cowpeas (Vigna sinensis L.). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. J. Sci. Food Agric., 85(2):297-304.
[7]Gilchrest, B.A., Eller, M.S., 1999. DNA photodamage stimulates melanogenesis and other photoprotective responses. J. Invest. Dermatol. Symp. Proc., 4(1):35-40.
[8]Gillbro, J.M., Olsson, M.J., 2011. The melanogenesis and mechanisms of skin-lightening agents—existing and new approaches. Int. J. Cosmet. Sci., 33(3):210-221.
[9]Goodall, T., Buffey, J.A., Rennie, I.G., 1994. Effect of melanocyte stimulating hormone on human cultured choroidal melanocytes, uveal melanoma cells, and retinal epithelial cells. Invest. Ophth. Vis. Sci., 35(3):826-837.
[10]Hocker, T.L., Singh, M.K., Tsao, H., 2008. Melanoma genetics and therapeutic approaches in the 21st century: moving from the benchside to the bedside. J. Invest. Dermatol., 128(11):2575-2595.
[11]Huang, M.H., Tai, H.M., Wang, B.S., et al., 2013. Inhibitory effects of water extract of Flos Inulae on mutation and tyrosinase. Food Chem., 139(1-4):1015-1020.
[12]Khan, A.L., Hussain, J., Hamayun, M., et al., 2010. Secondary metabolites from Inula britannica L. and their biological activities. Molecules, 15(3):1562-1577.
[13]Kim, J.S., Lee, J.H., Surh, J., et al., 2016. Aglycone isoflavones and exopolysaccharides produced by Lactobacillus acidophilus in fermented soybean paste. Prev. Nutr. Food Sci., 21(2):117-123.
[14]Kim, Y.J., Uyama, H., 2005. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci. CLMS, 62(15):1707-1723.
[15]Kubo, I., Chen, Q.X., Nihei, K., 2003. Molecular design of antibrowning agents: antioxidative tyrosinase inhibitors. Food Chem., 81(2):241-247.
[16]Lee, M.H., Lin, Y.P., Hsu, F.L., et al., 2006. Bioactive constituents of Spatholobus suberectus in regulating tyrosinase-related proteins and mRNA in HEMn cells. Phytochemistry, 67(12):1262-1270.
[17]Lee, N.K., Jeewanthi, R.K.C., Park, E.H., et al., 2016. Physicochemical and antioxidant properties of Cheddar-type cheese fortified with Inula britannica extract. J. Dairy Sci., 99(1):83-88.
[18]Lin, J.Y., Tang, C.Y., 2007. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem., 101(1):140-147.
[19]Liu, C.T., Erh, M.H., Lin, S.P., et al., 2016. Enrichment of two isoflavone aglycones in black soymilk by Rhizopus oligosporus NTU 5 in a plastic composite support bioreactor. J. Sci. Food Agric., 96(11):3779-3786.
[20]Más, J.S., Gerritsen, I., Hahmann, C., et al., 2003. Rate limiting factors in melanocortin 1 receptor signalling through the cAMP pathway. Pigment Cell Res., 16(5):540-547.
[21]Provance, D.W., Wei, M., Ipe, V., et al., 1996. Cultured melanocytes from dilute mutant mice exhibit dendritic morphology and altered melanosome distribution. Proc. Natl. Acad. Sci. USA, 96:14554-14558.
[22]Smit, N., Vicanova, J., Pavel, S., 2009. The hunt for natural skin whitening agents. Int. J. Mol. Sci., 10(12):5326-5349.
[23]Torino, M.I., Limón, R.I., Martínez-Villaluenga, C., et al., 2013. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem., 136(2):1030-1037.
[24]Tsai, C.C., Chan, C.F., Huang, W.Y., et al., 2013. Applications of Lactobacillus rhamnosus spent culture supernatant in cosmetic antioxidation, whitening and moisture retention applications. Molecules, 18(11):14161-14171.
[25]Videira, I.F.D.S., Moura, D.F., Magina, S., 2013. Mechanisms regulating melanogenesis. An. Bras. Dermatol., 88(1):76-83.
[26]Wang, B., Lin, S.Y., Shen, Y.Y., et al., 2015. Pure total flavonoids from Citrus paradisi Macfadyen act synergistically with arsenic trioxide in inducing apoptosis of Kasumi-1 leukemia cells in vitro. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(7):580-585.
[27]Wang, K.H., Lin, R.D., Hsu, F.L., et al., 2006. Cosmetic applications of selected traditional Chinese herbal medicines. J. Ethnopharmacol., 106(3):353-359.
[28]Wang, X., Wei, Y., Yuan, S., et al., 2006. Potential anticancer activity of litchi fruit pericarp extract against hepatocellular carcinoma in vitro and in vivo. Cancer Lett., 239(1):144-150.
[29]Wu, S.C., Su, Y.S., Cheng, H.Y., 2011. Antioxidant properties of Lactobacillus-fermented and non-fermented Graptopetalum paraguayense E. Walther at different stages of maturity. Food Chem., 129(3):804-809.
[30]Xing, Y., Cai, L., Yin, T.P., et al., 2016. Improving the antioxidant activity and enriching salvianolic acids by the fermentation of Salvia miltiorrhizae with Geomyces luteus. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 17(5):391-398.
[31]Yang, J., Ji, Y., Park, H., Lee, J., et al., 2014. Selection of functional lactic acid bacteria as starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler ex Sprengel.). Int. J. Food. Microbiol., 191:164-171.
[32]Yang, S., Fan, R., Shi, Z., et al., 2015. Identification of a novel microRNA important for melanogenesis in alpaca (Vicugna pacos). J. Anim. Sci., 93(4):1622-1631.
[33]Zhang, J.Q., Shi, L., Xu, X.N., et al., 2014. Therapeutic detoxification of quercetin against carbon tetrachloride-induced acute liver injury in mice and its mechanism. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 15(12):1039-1047.
Open peer comments: Debate/Discuss/Question/Opinion
<1>