Full Text:   <1826>

Summary:  <1383>

CLC number: R284

On-line Access: 2017-01-26

Received: 2016-02-17

Revision Accepted: 2016-05-04

Crosschecked: 2017-01-06

Cited: 1

Clicked: 4099

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Hyun-Dong Paik

http://orcid.org/0000-0001-9891-7703

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.2 P.152-160

http://doi.org/10.1631/jzus.B1600063


Improved antioxidative and cytotoxic activities of chamomile (Matricaria chamomilla) florets fermented by Lactobacillus plantarum KCCM 11613P


Author(s):  Eun-Hye Park, Won-Young Bae, Su-Jin Eom, Kee-Tae Kim, Hyun-Dong Paik

Affiliation(s):  Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; more

Corresponding email(s):   hdpaik@konkuk.ac.kr

Key Words:  Chamomile, Flavonoid, Lactobacillus plantarum, Matricaria chamomilla, Antioxidant, Cytotoxicity


Eun-Hye Park, Won-Young Bae, Su-Jin Eom, Kee-Tae Kim, Hyun-Dong Paik. Improved antioxidative and cytotoxic activities of chamomile (Matricaria chamomilla) florets fermented by Lactobacillus plantarum KCCM 11613P[J]. Journal of Zhejiang University Science B, 2017, 18(2): 152-160.

@article{title="Improved antioxidative and cytotoxic activities of chamomile (Matricaria chamomilla) florets fermented by Lactobacillus plantarum KCCM 11613P",
author="Eun-Hye Park, Won-Young Bae, Su-Jin Eom, Kee-Tae Kim, Hyun-Dong Paik",
journal="Journal of Zhejiang University Science B",
volume="18",
number="2",
pages="152-160",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600063"
}

%0 Journal Article
%T Improved antioxidative and cytotoxic activities of chamomile (Matricaria chamomilla) florets fermented by Lactobacillus plantarum KCCM 11613P
%A Eun-Hye Park
%A Won-Young Bae
%A Su-Jin Eom
%A Kee-Tae Kim
%A Hyun-Dong Paik
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 2
%P 152-160
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600063

TY - JOUR
T1 - Improved antioxidative and cytotoxic activities of chamomile (Matricaria chamomilla) florets fermented by Lactobacillus plantarum KCCM 11613P
A1 - Eun-Hye Park
A1 - Won-Young Bae
A1 - Su-Jin Eom
A1 - Kee-Tae Kim
A1 - Hyun-Dong Paik
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 2
SP - 152
EP - 160
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600063


Abstract: 
Antioxidative and cytotoxic effects of chamomile (Matricaria chamomilla) fermented by Lactobacillus plantarum were investigated to improve their biofunctional activities. Total polyphenol (TP) content was measured by the Folin-Denis method, and the antioxidant activities were assessed by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method and β-carotene bleaching method. AGS, HeLa, LoVo, MCF-7, and MRC-5 (normal) cells were used to examine the cytotoxic effects by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. The TP content of fermented chamomile reduced from 21.75 to 18.76 mg gallic acid equivalent (mg GAE)/g, but the DPPH radical capturing activity of fermented chamomile was found to be 11.1% higher than that of nonfermented chamomile after 72 h of fermentation. Following the β-carotene bleaching, the antioxidative effect decreased because of a reduction in pH during fermentation. Additionally, chamomile fermented for 72 h showed a cytotoxic effect of about 95% against cancer cells at 12.7 mg solid/ml of broth, but MRC-5 cells were significantly less sensitive against fermented chamomile samples. These results suggest that the fermentation of chamomile could be applied to develop natural antioxidative and anticancer products.

通过Lactobacillus plantarum KCCM 11613P乳杆菌发酵改善洋甘菊的抗氧化和细胞毒性

目的:研究洋甘菊(Matricaria chamomilla)经Lactobacillus plantarum乳杆菌发酵,可以改善其抗氧化和细胞毒性。
方法:通过Folin-Denis方法测量酚类物质的总含量(TP);通过二苯代苦味酰肼(DPPH)法和β-胡萝卜素漂白法评价抗氧化活性;通过MTT法测定AGS、HeLa、LoVo、MCF-7和MRC-5(正常)细胞的细胞毒性作用。
结论:发酵后洋甘菊的TP含量从21.75 mg GAE/g降至18.76 mg GAE/g(GAE:子酸当量),但是DPPH自由基清除率在发酵72 h后比未发酵的高11.1%。由于发酵期间pH的降低,在β-胡萝卜素漂白之后,其抗氧化效果降低。此外,发酵72 h后的洋甘菊对癌细胞有约95%的细胞毒性作用,但是MRC-5细胞的作用不敏感。这些结果表明,洋甘菊的发酵可用于开发天然抗氧化和抗癌产品。

关键词:乳杆菌(Lactobacillus plantarum);洋甘菊(Matricaria chamomilla);类黄酮;细胞毒性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Batista, A.L.A., Diógenes Alves UchÔa Lins, R., de Souza Coelho, R., et al., 2014. Clinical efficacy analysis of the mouth rinsing with pomegranate and chamomile plant extracts in the gingival bleeding reduction. Complement. Ther. Clin. Pract., 20(1):93-98.

[2]Benzie, I.F.F., Strain, J.J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 239(1):70-76.

[3]Bianco, M.I., Lúquez, C., de Jong, L.I.T., et al., 2008. Presence of Clostridium botulinum spores in Matricaria chamomilla (chamomile) and its relationship with infant botulism. Int. J. Food Microbiol., 121(3):3357-3360.

[4]Chang, H., Mi, M., Ling, W., et al., 2008. Structurally related cytotoxic effects of flavonoids on human cancer cells in vitro. Arch. Pharm. Res., 31(9):1137-1144.

[5]Choi, S.S., Kim, Y., Han, K.S., et al., 2006. Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett. Appl. Microbiol., 42(5):452-458.

[6]Cvetanović, A., Švarc-Gajić, J., Mašković, P., et al., 2015a. Antioxidant and biological activity of chamomile extracts obtained by different techniques: perspective of using superheated water for isolation of biologically active compounds. Ind. Crop. Prod., 65:582-591.

[7]Cvetanović, A., Švarc-Gajić, J., Zeković, Z., et al., 2015b. Comparative analysis of antioxidant, antimicrobiological and cytotoxic activities of native and fermented chamomile ligulate flower extracts. Planta, 242(3):721-732.

[8]Dong, J., Zhao, L., Cai, L., et al., 2014. Antioxidant activities and phenolics of fermented Bletilla formosana with eight plant pathogen fungi. J. Biosci. Bioeng., 118(4):396-399.

[9]Dueñas, M., Fernandez, D., Hernandez, T., et al., 2005. Bioactive phenolic compounds of cowpeas (Vigna sinensis L.). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. J. Sci. Food Agric., 85(2):297-304.

[10]Durackova, Z., 2010. Some current insights into oxidative stress. Physiol. Res., 59:459-469.

[11]Farideh, Z.Z., Bagher, M., Ashraf, A., et al., 2010. Effects of chamomile extract on biochemical and clinical parameters in a rat model of polycystic ovary syndrome. J. Reprod. Infertil., 11(3):169-174.

[12]Guzelmeric, E., Vovk, I., Yesilada, E., 2014. Development and validation of an HPTLC method for apigenin 7-O-glucoside in chamomile flowers and its application for fingerprint discrimination of chamomile-like materials. J. Pharm. Biomed. Anal., 107(25):108-118.

[13]Hur, S.J., Lee, S.Y., Kim, Y.C., et al., 2014. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem., 160(1):346-356.

[14]Ibrahim, N.A., Mustafa, S., Ismail, A., 2014. Effect of lactic fermentation on the antioxidant capacity of Malaysian herbal teas. Int. Food Res. J., 21(4):1483-1488.

[15]Jo, M.N., Jung, J.E., Lee, J.H., et al., 2014. Cytotoxicity of the white ginseng extract and red ginseng extract treated with partially purified β-glucosidase from Aspergillus usamii KCTC 6954. Food Sci. Biotechnol., 23(1):215-219.

[16]Koch, C., Reichling, J., Kehm, R., et al., 2008. Efficacy of anise oil, dwarf-pine oil and chamomile oil against thymidine-kinase-positive and thymidine-kinase-negative herpesviruses. J. Pharm. Pharmacol., 60(11):1545-1550.

[17]Kotnik, P., Skerget, M., Knez, Z., 2007. Supercritical fluid extraction of chamomile flower heads: comparison with conventional extraction, kinetics and scale-up. J. Supercrit. Fluids, 43(2):192-198.

[18]Lee, J.Y., Hwang, W.I., Lim, S.T., 2004. Antioxidant and anticancer activities of organic extracts from Platycodon grandiflorum A. De Candolle roots. J. Ethnopharmacol., 93(2-3):409-415.

[19]Li, B., Wang, C.Z., He, T.C., et al., 2010. Antioxidants potentiate American ginseng-induced killing of colorectal cancer cells. Cancer Lett., 289(1):62-70.

[20]Lim, Y., Jeong, T., Tyner, A.L., et al., 2007. Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by dietary compounds luteolin. Am. J. Physiol. Gastrointest. Liver Physiol., 292(1):66-75.

[21]Michlmayr, H., Brandes, W., Eder, R., et al., 2011. Characterization of two distinct glycosyl hydrolase family 78 α-L-rhamnosidases from Pediococcus acidilactici. J. Appl. Environ. Microbiol., 77(18):6524-6530.

[22]McKay, D.L., Blumberg, J.B., 2006. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother. Res., 20(8):619-633.

[23]Moreno, M.I.N., Isla, M.I., Sampietro, A.R., et al., 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol., 71(1-2):109-114.

[24]Ooi, K.L., Loh, S.I., Tan, M.L., et al., 2015. Growth inhibition of human liver carcinoma HepG2 cells and α-glucosidase inhibitory activity of Murdannia bracteata (C.B. Clarke) Kuntze ex J.K. Morton extracts. J. Ethnopharmacol., 162(13):55-60.

[25]Othman, A., Ismail, A., Ghani, N.A., et al., 2007. Antioxidant capacity and phenolic content of cocoa beans. Food Chem., 100(4):1523-1530.

[26]Petroianu, G., Szoke, E., Kalasz, H., et al., 2009. Monitoring by HPLC of chamomile flavonoids exposed to rat liver microsomal metabolism. Open J. Med. Chem., 3:1-7.

[27]Poyton, R.O., Ball, K.A., Castello, P.R., 2009. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol. Metab., 20(7):332-340.

[28]Pulido, R., Bravo, L., Saura-Calixto, F., 2000. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem., 48(8):3396-3402.

[29]Reuter, S., Gupta, S.C., Chaturvedi, M.M., et al., 2010. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med., 49(11):1603-1616.

[30]Santos, M.M., Piccirillo, C., Castro, P.M., et al., 2012. Bioconversion of oleuropein to hydroxytyrosol by lactic acid bacteria. World J. Microbiol. Biotechnol., 28(6):2435-2440.

[31]Schraufstätter, I., Hyslop, P.A., Jackson, J.H., et al., 1988. Oxidant-induced DNA damage of target cells. J. Clin. Investig. (Lond.), 82(3):1040-1050.

[32]Sebai, H., Jabri, M.A., Souli, A., et al., 2014. Antidiarrheal and antioxidant activities of chamomile (Matricaria recutita L.) decoction extract in rats. J. Ethnopharmacol., 152(2):327-332.

[33]Sun, S.Y., Hail, N.Jr., Lotan, R., 2004. Apoptosis as a novel target for cancer chemoprevention. J. Nat. Cancer Inst., 96(9):662-672.

[34]Tadbir, A.A., Pourshahidi, S., Ebrahimi, H., et al., 2015. The effect of Matricaria chamomilla (chamomile) extract in Orabase on minor aphthous stomatitis, a randomized clinical trial. J. Herb. Med., 5(2):71-76.

[35]Torino, M.I., Limon, R.I., Martinez-Villaluenga, C., et al., 2013. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem., 136(2):1030-1037.

[36]Vijayababu, M.R., Kanagaraj, P., Arunkumar, A., et al., 2006. Quercetin induces p53-independent apoptosis in human prostate cancer cells by modulating Bcl-2-related proteins: a possible mediation by IGFBP-3. Oncol. Res., 16(2):67-74.

[37]Wang, X., Wei, Y., Yuan, S., et al., 2006. Potential anticancer activity of litchi fruit pericarp extract against hepatocellular carcinoma in vitro and in vivo. Cancer Lett., 239(1):144-150.

[38]Wang, Y., Tang, H., Holmes, E., 2004. Metabolomic strategy for the classification and quality control of phytomedicine: a case study of chamomile flower (Matricaria recutita L.). Planta Med., 70(3):250-255.

[39]Yang, J., Ji, Y., Park, H., et al., 2014. Selection of functional lactic acid bacteria as starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler ex Sprengel). Int. J. Food Microbiol., 191(17):164-171.

[40]Yoon, H.J., Lee, K.A., Lee, J.H., et al., 2015. Effect of fermentation by Bacillus subtilis on antioxidant and cytotoxic activities of black rice bran. Int. J. Food Sci. Technol., 50(3):612-618.

[41]Zhang, Z., Lv, G., Pan, H., et al., 2012. Production of powerful antioxidant supplements via solid-state fermentatin of wheat (Triticum aestivum Linn.) by Cordyceps militaris. Food Technol. Biotechnol., 50(1):32-39.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE