CLC number: TQ041+.8; TS213
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-11-10
Cited: 3
Clicked: 5013
Tao Bao, Ye Wang, Yu-ting Li, Vemana Gowd, Xin-he Niu, Hai-ying Yang, Li-shui Chen, Wei Chen, Chong-de Sun. Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion[J]. Journal of Zhejiang University Science B, 2016, 17(12): 941-951.
@article{title="Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion",
author="Tao Bao, Ye Wang, Yu-ting Li, Vemana Gowd, Xin-he Niu, Hai-ying Yang, Li-shui Chen, Wei Chen, Chong-de Sun",
journal="Journal of Zhejiang University Science B",
volume="17",
number="12",
pages="941-951",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600243"
}
%0 Journal Article
%T Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion
%A Tao Bao
%A Ye Wang
%A Yu-ting Li
%A Vemana Gowd
%A Xin-he Niu
%A Hai-ying Yang
%A Li-shui Chen
%A Wei Chen
%A Chong-de Sun
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 12
%P 941-951
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600243
TY - JOUR
T1 - Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion
A1 - Tao Bao
A1 - Ye Wang
A1 - Yu-ting Li
A1 - Vemana Gowd
A1 - Xin-he Niu
A1 - Hai-ying Yang
A1 - Li-shui Chen
A1 - Wei Chen
A1 - Chong-de Sun
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 12
SP - 941
EP - 951
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600243
Abstract: Oxidative stress and diabetes have a tendency to alter protein, lipid, and DNA moieties. One of the strategic methods used to reduce diabetes-associated oxidative stress is to inhibit the carbohydrate-digesting enzymes, thereby decreasing gastrointestinal glucose production. Plant-derived natural antioxidant molecules are considered a therapeutic tool in the treatment of oxidative stress and diabetes. The objective of this study was to identify tartary buckwheat rice flavonoids and evaluate the effect of in vitro digestion on their antioxidant and antidiabetic properties. High performance liquid chromatography (HPLC) analysis indicated the presence of rutin as a major component and quercitrin as a minor component of both digested and non-digested flavonoids. Both extracts showed a significant antioxidant capacity, but digested flavonoids showed reduced activity compared to non-digested. There were some decreases of the antioxidant activities (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazy (DPPH) radical, and ferric reducing antioxidant power (FRAP)) of digested tartary buckwheat rice flavonoids compared with non-digested. flavonoids from both groups significantly inhibited reactive oxygen species (ROS) production and α-glucosidase activity. Both digested and non-digested flavonoids markedly increased glucose consumption and glycogen content in HepG2 cells. tartary buckwheat rice flavonoids showed appreciable antioxidant and antidiabetic properties, even after digestion. tartary buckwheat rice appears to be a promising functional food with potent antioxidant and antidiabetic properties.
[1]Alakolanga, A., Kumar, N., Jayasinghe, L., et al., 2015. Antioxidant property and α-glucosidase, α-amylase and lipase inhibiting activities of flacourtia inermis fruits: characterization of malic acid as an inhibitor of the enzymes. J. Food Sci. Technol. Mys., 52(12):8383-8388.
[2]Andriantsitohaina, R., Auger, C., Chataigneau, T., et al., 2012. Molecular mechanisms of the cardiovascular protective effects of polyphenols. Br. J. Nutr., 108(9):1532-1549.
[3]Chen, W., Li, Y., Li, J., et al., 2011. Myricetin affords protection against peroxynitrite-mediated DNA damage and hydroxyl radical formation. Food Chem. Toxicol., 49(9):2439-2444.
[4]Chen, W., Feng, L., Nie, H., et al., 2012a. Andrographolide induces autophagic cell death in human liver cancer cells through cyclophilin
[5]Chen, W., Feng, L., Huang, Z., et al., 2012b. Hispidin produced from phellinus linteus protects against peroxynitrite-mediated DNA damage and hydroxyl radical generation. Chem.-Biol. Interact., 199(3):137-142.
[6]Chen, W., Feng, L., Shen, Y., et al., 2013a. Myricitrin inhibits acrylamide-mediated cytotoxicity in human Caco-2 cells by preventing oxidative stress. Biomed. Res. Int., 2013:724183.
[7]Chen, W., Zhuang, J., Li, Y., et al., 2013b. Myricitrin protects against peroxynitrite-mediated DNA damage and cytotoxicity in astrocytes. Food Chem., 141(2):927-933.
[8]Chen, W., Shen, Y., Su, H., et al., 2014a. Hispidin derived from Phellinus linteus affords protection against acrylamide-induced oxidative stress in Caco-2 cells. Chem.-Biol. Interact., 219:83-89.
[9]Chen, W., Zhang, L., Zhang, K., et al., 2014b. Reciprocal regulation of autophagy and dntp pools in human cancer cells. Autophagy, 10(7):1272-1284.
[10]Chen, W., Zhou, S.M., Zheng, X.D., 2015. A new function of Chinese bayberry extract: protection against oxidative DNA damage. LWT-Food Sci. Technol., 60(2):1200-1205.
[11]Chen, W., Su, H., Xu, Y., et al., 2016a. Protective effect of wild raspberry (Rubus hirsutus Thunb.) extract against acrylamide-induced oxidative damage is potentiated after simulated gastrointestinal digestion. Food Chem., 196:943-952.
[12]Chen, W., Xu, Y., Zhang, L.X., et al., 2016b. Wild raspberry subjected to simulated gastrointestinal digestion improves the protective capacity against ethyl carbamate-induced oxidative damage in Caco-2 cells. Oxid. Med. Cell. Longev., 2016:3297363.
[13]Cheng, N., Wu, L., Zheng, J., et al., 2015. Buckwheat honey attenuates carbon tetrachloride-induced liver and DNA damage in mice. Evid.-Based Compl. Alt., 2015:987385.
[14]Choi, I., Seog, H., Park, Y., et al., 2007. Suppressive effects of germinated buckwheat on development of fatty liver in mice fed with high-fat diet. Phytomedicine, 14(7-8):563-567.
[15]Choi, J.Y., Lee, J.M., Lee, D.G., et al., 2015. The n-butanol fraction and rutin from tartary buckwheat improve cognition and memory in an in vivo model of amyloid-β-induced Alzheimer’s disease. J. Med. Food, 18(6):631-641.
[16]Floegel, A., Kim, D.O., Chung, S.J., et al., 2011. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal., 24(7):1043-1048.
[17]Giacco, F., Brownlee, M., 2010. Oxidative stress and diabetic complications. Circ. Res., 107(9):1058-1070.
[18]Gowd, V., Nandini, C.D., 2015. Erythrocytes in the combined milieu of high glucose and high cholesterol shows glycosaminoglycan-dependent cytoadherence to extracellular matrix components. Int. J. Biol. Macromol., 73:182-188.
[19]Hashim, A., Khan, M.S., Baig, M.H., et al., 2013. Antioxidant and α-amylase inhibitory property of Phyllanthus virgatus L.: an in vitro and molecular interaction study. BioMed Res. Int., 2013:729393.
[20]Hlila, M.B., Mosbah, H., Majouli, K., et al., 2015. α-Glucosidase inhibition by Tunisian Scabiosa arenaria Forssk. extracts. Int. J. Biol. Macromol., 77:383-389.
[21]Hosaka, T., Nii, Y., Tomotake, H., et al., 2011. Extracts of common buckwheat bran prevent sucrose digestion. J. Nutr. Sci. Vitaminol., 57(6):441-445.
[22]Hu, Y., Hou, Z., Liu, D., et al., 2016. Tartary buckwheat flavonoids protect hepatic cells against high glucose-induced oxidative stress and insulin resistance via MAPK signaling pathways. Food Funct., 7(3):1523-1536.
[23]Huang, Q., Chen, L., Teng, H., et al., 2015. Phenolic compounds ameliorate the glucose uptake in HepG2 cells’ insulin resistance via activating AMPK anti-diabetic effect of phenolic compounds in HepG2 cells. J. Funct. Foods, 19:487-494.
[24]Hur, S.J., Park, S.J., Jeong, C.H., 2011. Effect of buckwheat extract on the antioxidant activity of lipid in mouse brain and its structural change during in vitro human digestion. J. Agric. Food Chem., 59(19):10699-10704.
[25]Khansari, N., Shakiba, Y., Mahmoudi, M., 2009. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov., 3(1):73-80.
[26]Kim, K.T., Rioux, L.E., Turqeon, S.L., 2014. Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry, 98:27-33.
[27]Kim, S.L., Kim, S.K., Park, C.H., 2004. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res. Int., 37(4):319-327.
[28]Klaunig, J.E., Kamendulis, L.M., Hocevar, B.A., 2010. Oxidative stress and oxidative damage in carcinogenesis. Toxicol. Pathol., 38(1):96-109.
[29]Kreft, M., 2016. Buckwheat phenolic metabolites in health and disease. Nutr. Res. Rev., 29(1):30-39.
[30]Kwon, Y.I., Apostolidis, E., Shetty, K., 2007. Evaluation of pepper (Capsicum annuum) for management of diabetes and hypertension. J. Food Biochem., 31(3):370-385.
[31]Lee, C.C., Shen, S.R., Lai, Y.J., et al., 2013. Rutin and quercetin, bioactive compounds from tartary buckwheat, prevent liver inflammatory injury. Food Funct., 4(5):794-802.
[32]Lee, Y.A., Cho, E.J., Tanaka, T., et al., 2007. Inhibitory activities of proanthocyanidins from persimmon against oxidative stress and digestive enzymes related to diabetes. J. Nutr. Sci. Vitaminol., 53(3):287-292.
[33]Li, S.Q., Zhang, Q.H., 2001. Advances in the development of functional foods from buckwheat. Crit. Rev. Food Sci. Nutr., 41(6):451-464.
[34]Lin, L.Y., Peng, C.C., Yang, Y.L., et al., 2008. Optimization of bioactive compounds in buckwheat sprouts and their effect on blood cholesterol in hamsters. J. Agric. Food Chem., 56(4):1216-1223.
[35]Liu, S., Li, D., Huang, B., et al., 2013. Inhibition of pancreatic lipase, α-glucosidase, α-amylase, and hypolipidemic effects of the total flavonoids from nelumbo nucifera leaves. J. Ethnopharmacol., 149(1):263-269.
[36]Lv, Q., Si, M., Yan, Y., et al., 2014. Effects of phenolic-rich litchi (Litchi chinensis Sonn.) pulp extracts on glucose consumption in human HepG2 cells. J. Funct. Foods, 7:621-629.
[37]Merendino, N., Molinari, R., Costantini, L., et al., 2014. A new “functional” pasta containing tartary buckwheat sprouts as an ingredient improves the oxidative status and normalizes some blood pressure parameters in spontaneously hypertensive rats. Food Funct., 5(5):1017-1026.
[38]Ouyang, J.Y., Parakhia, R.A., Ochs, R.S., 2011. Metformin activates AMP kinase through inhibition of AMP deaminase. J. Biol. Chem., 286(1):1-11.
[39]Pang, C., Sheng, Y., Jiang, P., et al., 2015. Chlorogenic acid prevents acetaminophen-induced liver injury: the involvement of CYP450 metabolic enzymes and some antioxidant signals. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(7):602-610.
[40]Rahman, T., Hosen, I., Islam, M.T., et al., 2012. Oxidative stress and human health. Adv. Biosci. Biotechnol., 3:997-1019.
[41]Su, H.M., Feng, L.N., Zheng, X.D., et al., 2016. Myricetin protects against diet-induced obesity and ameliorates oxidative stress in C57BL/6 mice. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 17(6):437-446.
[42]Yilmazer-Musa, M., Griffith, A.M., Michels, A.J., et al., 2012. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity. J. Agric. Food Chem., 60(36):8924-8929.
[43]Yu, H., Zhen, J., Pang, B., et al., 2015. Ginsenoside Rg1 ameliorates oxidative stress and myocardial apoptosis in streptozotocin-induced diabetic rats. J. Zhejiang Univ. -Sci. B (Biomed. & Biotechnol.), 16(5):344-354.
[44]Yu, Z., Yin, Y., Zhao, W., et al., 2012. Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase. Food Chem., 135(3):2078-2085.
[45]Yu, Z.P., Xu, D.D., Lu, L.F., et al., 2016. Immunomodulatory effect of a formula developed from American ginseng and Chinese jujube extracts in mice. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 17(2):147.
[46]Zhang, G., Xu, Z., Gao, Y., et al., 2015. Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. J. Food Sci., 80(5):H1111-H1119.
[47]Zhang, J., Shi, L., Xu, X., et al., 2014. Therapeutic detoxification of quercetin against carbon tetrachloride-induced acute liver injury in mice and its mechanism. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 15(12):1039-1047.
[48]Zhou, X., Wang, Q., Yang, Y., et al., 2012. Anti-infection effects of buckwheat flavonoid extracts (BWFEs) from germinated sprouts. J. Food Sci. Technol., 52(4):2458-2463.
[49]Zhou, X., Hao, T., Zhou, Y., et al., 2015. Relationships between antioxidant compounds and antioxidant activities of tartary buckwheat during germination. J. Med. Plants Res., 6(1):24-29.
[50]Zhu, F., 2016. Chemical composition and health effects of tartary buckwheat. Food Chem., 203:231-245.
[51]中文摘要
[52]题目:体外模拟消化对黑苦荞米黄酮抗氧化及降血糖 活性的影响
[53]目的:研究黑苦荞米黄酮模拟消化前后活性成分含量 变化,以及模拟消化对其抗氧化及降血糖活性的影响.
[54]创新点:采用体外模拟消化的方法,更加真实地反应消化对黑苦荞米黄酮含量及活性的影响,同时采用体外抗氧化方法、α-葡萄糖苷酶实验和HepG2细胞模型,评价其抗氧化和降血糖活性.
[55]方法:本文采用体外模拟消化的方法,对黑苦荞米黄酮进行模拟消化,使用高效液相色谱(HPLC)检测其消化前后黄酮物质含量变化情况(表1和图1);通过ABTS、DPPH和FRAP等实验研究模拟消化对其抗氧化活性的影响(表2和图2),进一步检测其消化前后对细胞活性氧(ROS)产生的抑制能力(图3);利用α-葡萄糖苷酶活性抑制实验(图4)以及细胞葡萄糖消耗和糖原含量实验(图5),评价黑苦荞米黄酮模拟消化前后的降血糖活性.
[56]结论:HPLC结果表明,黑苦荞米黄酮中的主要活性物质为芦丁和槲皮苷,经模拟消化后,其活性物质含量没有显著变化.体外抗氧化实验ABTS、DPPH和FRAP结果均表明,黑苦荞米黄酮具有抗氧化活性,体外模拟消化后,其抗氧化活性有所降低;细胞ROS结果表明,黑苦荞米黄酮模拟消化前后均具有较好的ROS抑制活性.进一步研究表明,黑苦荞米黄酮模拟消化前后对α-葡萄糖苷酶具有较好的抑制能力,同时可以促进细胞对葡萄糖的消耗以及细胞糖原的生成,具有较好的降血糖活性.
[57]关键词:黑苦荞米;黄酮;体外模拟消化;抗氧化;降血糖
Open peer comments: Debate/Discuss/Question/Opinion
<1>