Full Text:   <2238>

Summary:  <1660>

Suppl. Mater.: 

CLC number: R845.2+1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2020-07-10

Cited: 0

Clicked: 3279

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xue-jun Sun

https://orcid.org/0000-0003-2387-5531

Wen-wu Liu

https://orcid.org/0000-0003-1530-8860

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2020 Vol.21 No.8 P.646-656

http://doi.org/10.1631/jzus.B1900687


Lung macrophages are involved in lung injury secondary to repetitive diving


Author(s):  Ke Ning, Zhen-biao Guan, Hong-tao Lu, Ning Zhang, Xue-jun Sun, Wen-wu Liu

Affiliation(s):  Department of Navy Aviation Medicine, Faculty of Naval Medicine, the Naval Military Medical University, Shanghai 200433, China; more

Corresponding email(s):   sunxjk@hotmail.com, liuwenwu1980@hotmail.com

Key Words:  Repetitive diving, Decompression, Lung injury, Bubble, Macrophage, Inflammation


Ke Ning, Zhen-biao Guan, Hong-tao Lu, Ning Zhang, Xue-jun Sun, Wen-wu Liu. Lung macrophages are involved in lung injury secondary to repetitive diving[J]. Journal of Zhejiang University Science B, 2020, 21(8): 646-656.

@article{title="Lung macrophages are involved in lung injury secondary to repetitive diving",
author="Ke Ning, Zhen-biao Guan, Hong-tao Lu, Ning Zhang, Xue-jun Sun, Wen-wu Liu",
journal="Journal of Zhejiang University Science B",
volume="21",
number="8",
pages="646-656",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1900687"
}

%0 Journal Article
%T Lung macrophages are involved in lung injury secondary to repetitive diving
%A Ke Ning
%A Zhen-biao Guan
%A Hong-tao Lu
%A Ning Zhang
%A Xue-jun Sun
%A Wen-wu Liu
%J Journal of Zhejiang University SCIENCE B
%V 21
%N 8
%P 646-656
%@ 1673-1581
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1900687

TY - JOUR
T1 - Lung macrophages are involved in lung injury secondary to repetitive diving
A1 - Ke Ning
A1 - Zhen-biao Guan
A1 - Hong-tao Lu
A1 - Ning Zhang
A1 - Xue-jun Sun
A1 - Wen-wu Liu
J0 - Journal of Zhejiang University Science B
VL - 21
IS - 8
SP - 646
EP - 656
%@ 1673-1581
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1900687


Abstract: 
This study aimed to establish an animal model of decompression-induced lung injury (DILI) secondary to repetitive diving in mice and explore the role of macrophages in DILI and the protective effects of high-concentration hydrogen (HCH) on DILI. Mice were divided into three groups: control group, DILI group, and HCH group. Mice were exposed to hyperbaric air at 600 kPa for 60 min once daily for consecutive 3 d and then experienced decompression. In HCH group, mice were administered with HCH (66.7% hydrogen and 33.3% oxygen) for 60 min after each hyperbaric exposure. Pulmonary function tests were done 6 h after decompression; the blood was harvested for cell counting; the lung tissues were harvested for the detection of inflammatory cytokines, hematoxylin and eosin (HE) staining, and immunohistochemistry; western blotting and polymerase chain reaction (PCR) were done for the detection of markers for M1 and M2 macrophages. Our results showed that bubbles formed after decompression and repeated hyperbaric exposures significantly reduced the total lung volume and functional residual volume. Moreover, repetitive diving dramatically increased proinflammatory factors and increased the markers of both M1 and M2 macrophages. HCH inhalation improved lung function to a certain extent, and significantly reduced the pro-inflammatory factors. These effects were related to the reduction of M1 macrophages as well as the increase in M2 macrophages. This study indicates that repetitive diving damages lung function and activates lung macrophages, resulting in lung inflammation. HCH inhalation after each diving may be a promising strategy for the prevention of DILI.

巨噬细胞参与反复潜水引起的肺损伤

目的: 探索反复潜水引起肺损伤的炎症机制以及吸入高浓度氢气(HCH)对这种损伤的治疗作用.
创新点:本研究首次在小鼠体内建立并评估减压诱导肺损伤(DILI)模型;首次探索巨噬细胞在DILI中的作用;首次探索呼吸HCH对于DILI的治疗作用.
方法:将雄性C57小鼠随机分为对照组、DILI组和HCH组.DILI组于600 kPa压力下暴露60 min,连续3 d.HCH组在减压处理后吸入HCH(66.7% H2+33.3% O2)干预.减压操作6 h后检测小鼠肺功能和小鼠肺干湿比,取小鼠肺组织固定进行苏木精-伊红染色,并取小鼠全血进行血细胞计数实验.取小鼠肺组织提取蛋白并提取血清,采用酶联免疫吸附测定(ELISA)检测炎症因子与趋化因子,并使用蛋白质免疫印迹(western blotting)试验测定小鼠肺内小鼠含生长因子样模体粘液样激素样受体(F4/80)、巨噬细胞甘露糖受体(CD206)和诱导型一氧化氮合酶(iNOS)的表达量.使用免疫组化检测小鼠肺组织切片内F4/80、CD206和iNOS的阳性细胞的比例.提取小鼠肺组织内总信使核糖核酸(mRNA),使用荧光实时定量聚合酶链反应测定极化标记蛋白CD206和iNOS以及炎症因子TNF-αIL-10的基因表达量.
结论:多次减压可导致肺水肿、组织结构破坏和肺功能下降,病变程度和减压次数有关,证明模型建立成功.DILI可以诱导肺内和循环炎症反应的激活,巨噬细胞可能向肺内迁移趋化并向不同亚型极化,极化后的巨噬细胞M1与M2分别参与炎症激活与炎症抑制的过程.吸入HCH可以显著改善小鼠肺损伤,降低肺内炎症反应,抑制巨噬细胞向M1亚型极化并促进其向M2亚型极化,从而证明吸入HCH对于DILI具有治疗作用.

关键词:反复潜水;减压;肺损伤;气泡;巨噬细胞;炎症反应

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abe T, Li XK, Yazawa K, et al., 2012. Hydrogen-rich university of Wisconsin solution attenuates renal cold ischemia-reperfusion injury. Transplantation, 94(1):14-21.

[2]Aggarwal NR, King LS, D'Alessio FR, 2014. Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol, 306(8):L709-L725.

[3]Bayne CG, Hunt WS, Johanson DC, et al., 1985. Doppler bubble detection and decompression sickness: a prospective clinical trial. Undersea Biomed Res, 12(3):327-332.

[4]Butler BD, Hills BA, 1979. The lung as a filter for microbubbles. J Appl Physiol Respir Environ Exerc Physiol, 47(3):537-543.

[5]Cronin WA, Senese AL, Arnaud FG, et al., 2016. The effect of the perfluorocarbon emulsion oxycyte on platelet count and function in the treatment of decompression sickness in a swine model. Blood Coagul Fibrinolysis, 27(6):702-710.

[6]Dunford RG, Vann RD, Gerth WA, et al., 2002. The incidence of venous gas emboli in recreational diving. Undersea Hyperb Med, 29(4):247-259.

[7]Fahlman A, 2017. Allometric scaling of decompression sickness risk in terrestrial mammals; cardiac output explains risk of decompression sickness. Sci Rep, 7:40918.

[8]Han CH, Zhang PX, Xu WG, et al., 2017. Polarization of macrophages in the blood after decompression in mice. Med Gas Res, 7(4):236-240.

[9]Huang JL, Liu WW, Sun XJ, 2018. Hydrogen inhalation improves mouse neurological outcomes after cerebral ischemia/ reperfusion independent of anti-necroptosis. Med Gas Res, 8(1):1-5.

[10]Kondo Y, Shiohira S, Kamizato K, et al., 2012. Vascular hyperpermeability in pulmonary decompression illness: ‘The chokes’. Emerg Med Australas, 24(4):460-462.

[11]Li H, Chen O, Ye Z, et al., 2017. Inhalation of high concentrations of hydrogen ameliorates liver ischemia/reperfusion injury through A2A receptor mediated PI3K-Akt pathway. Biochem Pharmacol, 130:83-92.

[12]Liddiard K, Taylor PR, 2015. Understanding local macrophage phenotypes in disease: shape-shifting macrophages. Nat Med, 21(2):119-120.

[13]Ljubkovic M, Gaustad SE, Marinovic J, et al., 2010. Ultrasonic evidence of acute interstitial lung edema after SCUBA diving is resolved within 2–3 h. Respir Physiol Neurobiol, 171(2):165-170.

[14]Ljubkovic M, Dujic Z, Møllerløkken A, et al., 2011. Venous and arterial bubbles at rest after no-decompression air dives. Med Sci Sports Exerc, 43(6):990-995.

[15]Marinovic J, Ljubkovic M, Obad A, et al., 2010. Assessment of extravascular lung water and cardiac function in trimix SCUBA diving. Med Sci Sports Exerc, 42(6):1054-1061.

[16]Mills CD, Ley K, 2014. M1 and M2 macrophages: the chicken and the egg of immunity. J Innate Immun, 6(6):716-726.

[17]Ning K, Liu WW, Huang JL, et al., 2018. Effects of hydrogen on polarization of macrophages and microglia in a stroke model. Med Gas Res, 8(4):154-159.

[18]Ohsawa I, Ishikawa M, Takahashi K, et al., 2007. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med, 13(6):688-694.

[19]Ono H, Nishijima Y, Ohta S, et al., 2017. Hydrogen gas inhalation treatment in acute cerebral infarction: a randomized controlled clinical study on safety and neuroprotection. J Stroke Cerebrovasc Dis, 26(11):2587-2594.

[20]Parisi L, Gini E, Baci D, et al., 2018. Macrophage polarization in chronic inflammatory diseases: killers or builders? J Immunol Res, 2018:8917804.

[21]Selvi EC, Rao KKV, Malathi, 2013. Should the functional residual capacity be ignored? J Clin Diagn Res, 7(1):43-45.

[22]Solis AG, Bielecki P, Steach HR, et al., 2019. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature, 573(7772):69-74.

[23]Sun Q, Kang ZM, Cai JM, et al., 2009. Hydrogen-rich saline protects myocardium against ischemia/reperfusion injury in rats. Exp Biol Med, 234(10):1212-1219.

[24]van Liew HD, Flynn ET, 2005. Direct ascent from air and N2-O2 saturation dives in humans: DCS risk and evidence of a threshold. Undersea Hyperb Med, 32(6):409-419.

[25]Vann RD, Butler FK, Mitchell SJ, et al., 2011. Decompression illness. Lancet, 377(9760):153-164.

[26]List of electronic supplementary materials

[27]Materials and methods

[28]Fig. S1 Micro computed tomography scan for bubbles

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE