CLC number:
On-line Access: 2025-07-28
Received: 2025-04-03
Revision Accepted: 2025-05-01
Crosschecked: 2025-07-28
Cited: 0
Clicked: 169
Citations: Bibtex RefMan EndNote GB/T7714
Yang JIANG, Zhen SU, Jing ZHENG, Chih-Hung HSU, Ye CHEN. Small fish making a big difference: beloved star of environmental toxicology research in the current era[J]. Journal of Zhejiang University Science B, 2025, 26(7): 613-632.
@article{title="Small fish making a big difference: beloved star of environmental toxicology research in the current era",
author="Yang JIANG, Zhen SU, Jing ZHENG, Chih-Hung HSU, Ye CHEN",
journal="Journal of Zhejiang University Science B",
volume="26",
number="7",
pages="613-632",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2500166"
}
%0 Journal Article
%T Small fish making a big difference: beloved star of environmental toxicology research in the current era
%A Yang JIANG
%A Zhen SU
%A Jing ZHENG
%A Chih-Hung HSU
%A Ye CHEN
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 7
%P 613-632
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2500166
TY - JOUR
T1 - Small fish making a big difference: beloved star of environmental toxicology research in the current era
A1 - Yang JIANG
A1 - Zhen SU
A1 - Jing ZHENG
A1 - Chih-Hung HSU
A1 - Ye CHEN
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 7
SP - 613
EP - 632
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2500166
Abstract: The zebrafish has emerged as a powerful model organism in life science owing to its remarkable biological characteristics and wide-ranging applications. This review provides a comprehensive overview of the recent advancements in research on zebrafish within the field of environmental toxicology, highlighting specific studies where this species was used to investigate various pollutants to elucidate their impacts and underlying mechanisms. The findings of these studies underscore the significant potential of zebrafish as a model to gain crucial insights into the ecological consequences of environmental contamination and toxicity pathways. By incorporating cutting-edge technologies such as artificial intelligence (AI), high-throughput screening, and omics approaches, the use of zebrafish as a model organism is poised to significantly accelerate toxicological investigations, promote environmental conservation efforts, contribute to safeguarding human health, and advance sustainable development objectives.
[1]AksakalFI, SismanT, 2020. Developmental toxicity induced by Cu(OH)2 nanopesticide in zebrafish embryos. Environ Toxicol, 35(12):1289-1298.
[2]AmorimMJB, GomesSIL, BichoRCS, et al., 2022. On virus and nanomaterials‒Lessons learned from the innate immune system‒ACE activation in the invertebrate model Enchytraeus crypticus. J Hazard Mater, 436:129173.
[3]Asana MaricanHT, ShenHY, 2024. Dynamics of chromosome aberrations and cell death in zebrafish embryos exposed to 137Cs total-body irradiation. Environ Sci Technol, 58(5):2204-2213.
[4]AudiraG, LeeJS, VasquezRD, et al., 2024. Assessments of carbon nanotubes toxicities in zebrafish larvae using multiple physiological and molecular endpoints. Chem-Biol Interact, 392:110925.
[5]BrunNR, ChristenV, FurrerG, et al., 2014. Indium and indium tin oxide induce endoplasmic reticulum stress and oxidative stress in zebrafish (Danio rerio). Environ Sci Technol, 48(19):11679-11687.
[6]BugelSM, TanguayRL, PlanchartA, 2014. Zebrafish: a marvel of high-throughput biology for 21st century toxicology. Curr Environ Health Rep, 1(4):341-352.
[7]ChangY, TsaiJF, ChenPJ, et al., 2023. Thallium exposure interfered with heart development in embryonic zebrafish (Danio rerio): from phenotype to genotype. Sci Total Environ, 878:162901.
[8]ChenHH, QiuWH, YangXJ, et al., 2022. Perfluorooctane sulfonamide (PFOSA) induces cardiotoxicity via aryl hydrocarbon receptor activation in zebrafish. Environ Sci Technol, 56(12):8438-8448.
[9]ChenJF, TanguayRL, XiaoYY, et al., 2016. TBBPA exposure during a sensitive developmental window produces neurobehavioral changes in larval zebrafish. Environ Pollut, 216:53-63.
[10]ChenL, SuB, YuJ, et al., 2022. Combined effects of arsenic and 2,2-dichloroacetamide on different cell populations of zebrafish liver. Sci Total Environ, 821:152961.
[11]ChenQL, SunYL, LiuZH, et al., 2017. Sex-dependent effects of subacute mercuric chloride exposure on histology, antioxidant status and immune-related gene expression in the liver of adult zebrafish (Danio rerio). Chemosphere, 188:1-9.
[12]ChenXL, YangSY, ZhuBR, et al., 2024. Effects of environmentally relevant concentrations of niclosamide on lipid metabolism and steroid hormone synthesis in adult female zebrafish. Sci Total Environ, 910:168737.
[13]CoeTS, HamiltonPB, HodgsonD, et al., 2008. An environmental estrogen alters reproductive hierarchies, disrupting sexual selection in group-spawning fish. Environ Sci Technol, 42(13):5020-5025.
[14]CoeTS, SöffkerMK, FilbyAL, et al., 2010. Impacts of early life exposure to estrogen on subsequent breeding behavior and reproductive success in zebrafish. Environ Sci Technol, 44(16):6481-6487.
[15]DebofskyAR, KlinglerRH, Mora-ZamoranoFX, et al., 2018. Female reproductive impacts of dietary methylmercury in yellow perch (Perca flavescens) and zebrafish (Danio rerio). Chemosphere, 195:301-311.
[16]de OliveiraS, HouserightRA, GravesAL, et al., 2019. Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish. J Hepatol, 70(4):710-721.
[17]di DomenicoK, LacchettiI, CafieroG, et al., 2024. Reviewing the use of zebrafish for the detection of neurotoxicity induced by chemical mixtures through the analysis of behaviour. Chemosphere, 359:142246.
[18]DongX, ZhangZ, MengSL, et al., 2018. Parental exposure to bisphenol A and its analogs influences zebrafish offspring immunity. Sci Total Environ, 610-611:291-297.
[19]FangQ, ShiQP, GuoYY, et al., 2016. Enhanced bioconcentration of bisphenol A in the presence of nano-TiO2 can lead to adverse reproductive outcomes in zebrafish. Environ Sci Technol, 50(2):1005-1013.
[20]FengYY, YuanHB, WangWZ, et al., 2022. Co-exposure to polystyrene microplastics and lead aggravated ovarian toxicity in female mice via the PERK/eIF2α signaling pathway. Ecotoxicol Environ Saf, 243:113966.
[21]FuXF, HanH, YangH, et al., 2024. Nrf2-mediated ferroptosis of spermatogenic cells involved in male reproductive toxicity induced by polystyrene nanoplastics in mice. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 25(4):307-323.
[22]GaoDX, LinJ, OuKL, et al., 2018. Embryonic exposure to benzo(a)pyrene inhibits reproductive capability in adult female zebrafish and correlation with DNA methylation. Environ Pollut, 240:403-411.
[23]GaoYF, FengJF, ZhuJX, et al., 2020. Predicting copper toxicity in zebrafish larvae under complex water chemistry conditions by using a toxicokinetic-toxicodynamic model. J Hazard Mater, 400:123205.
[24]GeKF, DuXD, LiuHH, et al., 2024. The cytotoxicity of microcystin-LR: ultrastructural and functional damage of cells. Arch Toxicol, 98(3):663-687.
[25]GonçalvesÍFS, SouzaTM, VieiraLR, et al., 2020. Toxicity testing of pesticides in zebrafish—a systematic review on chemicals and associated toxicological endpoints. Environ Sci Pollut Res, 27(10):10185-10204.
[26]GuJ, ZhuYH, GuoM, et al., 2022. The potential mechanism of BPF-induced neurotoxicity in adult zebrafish: correlation between untargeted metabolomics and gut microbiota. Sci Total Environ, 839:156221.
[27]GuoSJ, KangBL, WangRH, et al., 2023. Methylmercury induces ectopic expression of complement components and apoptotic cell death in the retina of the zebrafish embryo. Sci Total Environ, 896:165215.
[28]GuoXJ, ZhangRH, JinQ, et al., 2023. The kisspeptin-GnIH signaling pathway in the role of zebrafish courtship and aggressive behavior induced by azoxystrobin. Environ Pollut, 325:121461.
[29]GyimahE, XuH, DongX, et al., 2021. Developmental neurotoxicity of low concentrations of bisphenol A and S exposure in zebrafish. Chemosphere, 262:128045.
[30]HanY, ShiW, TangY, et al., 2022. Microplastics and bisphenol A hamper gonadal development of whiteleg shrimp (Litopenaeus vannamei) by interfering with metabolism and disrupting hormone regulation. Sci Total Environ, 810:152354.
[31]HeYN, WangY, ZhuYQ, et al., 2023. Loss-of-function of zebrafish cdt1 causes retarded body growth and underdeveloped gonads resembling human Meier-Gorlin syndrome. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(11):1037-1046.
[32]HsiaoCD, WuHH, MalhotraN, et al., 2020. Expression and purification of recombinant GHK tripeptides are able to protect against acute cardiotoxicity from exposure to waterborne-copper in zebrafish. Biomolecules, 10(9):1202.
[33]HuY, MaX, LiuRJ, et al., 2022. 2,4-Dichlorophenol increases primordial germ cell numbers via ESR2a-dependent pathway in zebrafish larvae. Environ Sci Technol, 56(19):13878-13887.
[34]HuaJH, WangXL, ZhuJP, et al., 2022. Decabromodiphenyl ethane induced hyperactivity in developing zebrafish at environmentally relevant concentrations. Ecotoxicol Environ Saf, 244:114044.
[35]HuangHH, HuangCJ, WangLJ, et al., 2010. Toxicity, uptake kinetics and behavior assessment in zebrafish embryos following exposure to perfluorooctanesulphonicacid (PFOS). Aquat Toxicol, 98(2):139-147.
[36]HuangJ, WangQY, LiuS, et al., 2022. Comparative chronic toxicities of PFOS and its novel alternatives on the immune system associated with intestinal microbiota dysbiosis in adult zebrafish. J Hazard Mater, 425:127950.
[37]HuangWL, ShiXL, ZhangQ, et al., 2023. Transgenerational effects of BDE-47 to zebrafish based on histomorphometry and toxicogenomic analyses. Chemosphere, 344:140401.
[38]JiaXD, LuK, LiangXF, 2024. Neuropeptide Y receptor Y8b (npy8br) regulates feeding and digestion in Japanese medaka (Oryzias latipes) larvae: evidence from gene knockout. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 25(7):605-616.
[39]JiangYW, PanQH, WangZ, et al., 2024. Efficient genome editing in medaka (Oryzias latipes) using a codon-optimized SaCas9 system. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 25(12):1083-1096.
[40]JinMQ, ZhangD, ZhangY, et al., 2018. Neurological responses of embryo-larval zebrafish to short-term sediment exposure to decabromodiphenylethane. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 19(5):400-408.
[41]JinYX, XiaJZ, PanZH, et al., 2018. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ Pollut, 235:322-329.
[42]KalueffAV, StewartAM, GerlaiR, 2014. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci, 35(2):63-75.
[43]LawsonND, WeinsteinBM, 2002. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol, 248(2):307-318.
[44]le FolV, Aït-AïssaS, SonavaneM, et al., 2017. In vitro and in vivo estrogenic activity of BPA, BPF and BPS in zebrafish-specific assays. Ecotoxicol Environ Saf, 142:150-156.
[45]LiG, DangY, LiX, et al., 2024. Transcriptome-based approach to identify mechanisms underlying locomotor abnormality induced by decabromodiphenyl ethane in zebrafish larvae. J Hazard Mater, 465:133228.
[46]LiJY, GuoJL, YiJF, et al., 2024. Widespread phthalate esters and monoesters in the aquatic environment: distribution, bioconcentration, and ecological risks. J Hazard Mater, 477:135201.
[47]LiSY, JiangY, SunQQ, et al., 2020. Tebuconazole induced oxidative stress related hepatotoxicity in adult and larval zebrafish (Danio rerio). Chemosphere, 241:125129.
[48]LiangXF, AdamovskyO, SoudersCL, et al., 2019. Biological effects of the benzotriazole ultraviolet stabilizers UV-234 and UV-320 in early-staged zebrafish (Danio rerio). Environ Pollut, 245:272-281.
[49]LimS, KangH, KwonB, et al., 2022. Zebrafish (Danio rerio) as a model organism for screening nephrotoxic chemicals and related mechanisms. Ecotoxicol Environ Saf, 242:113842.
[50]LinCY, ChiangCY, TsaiHJ, 2016. Zebrafish and Medaka: new model organisms for modern biomedical research. J Biomed Sci, 23:19.
[51]LinXY, WangYN, YangXH, et al., 2023. Endocrine disrupting effect and reproductive toxicity of the separate exposure and co-exposure of nano-polystyrene and diethylstilbestrol to zebrafish. Sci Total Environ, 865:161100.
[52]LiuHC, ZhuXY, ChenJH, et al., 2017. Toxicity comparison of different active fractions extracted from radix Sophorae tonkinensis in zebrafish. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 18(9):757-769.
[53]LiuLH, LiYF, CoelhanM, et al., 2016. Relative developmental toxicity of short-chain chlorinated paraffins in Zebrafish (Danio rerio) embryos. Environ Pollut, 219:1122-1130.
[54]LiuN, DongFS, XuJ, et al., 2016. Chiral bioaccumulation behavior of tebuconazole in the zebrafish (Danio rerio). Ecotoxicol Environ Saf, 126:78-84.
[55]LiuRM, GaoHN, LiangXF, et al., 2024. Polystyrene nanoplastics alter intestinal toxicity of 2,4-DTBP in a sex-dependent manner in zebrafish (Danio rerio). J Hazard Mater, 478:135585.
[56]LiuST, SongGL, LiF, et al., 2022. Bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate showed poor penetrability but increased the permeability of blood brain barrier: evidences from in vitro and in vivo studies. J Hazard Mater, 424:127386.
[57]LombóM, Fernández-DíezC, González-RojoS, et al., 2015. Transgenerational inheritance of heart disorders caused by paternal bisphenol A exposure. Environ Pollut, 206:667-678.
[58]LuHM, GuoTT, ZhangY, et al., 2024. Endoplasmic reticulum stress-induced NLRP3 inflammasome activation as a novel mechanism of polystyrene microplastics (PS-MPs)-induced pulmonary inflammation in chickens. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 25(3):233-243.
[59]LuJ, WangWG, ZhangC, et al., 2022. Characterization of glyphosate-induced cardiovascular toxicity and apoptosis in zebrafish. Sci Total Environ, 851:158308.
[60]MaLL, YinZB, XieQR, et al., 2023. Metabolomics and mass spectrometry imaging reveal the chronic toxicity of indoxacarb to adult zebrafish (Danio rerio) livers. J Hazard Mater, 453:131304.
[61]MaR, AbidN, YangSC, et al., 2023. From crisis to resilience: strengthening climate action in OECD countries through environmental policy and energy transition. Environ Sci Pollut Res, 30(54):115480-115495.
[62]MacRaeCA, PetersonRT, 2015. Zebrafish as tools for drug discovery. Nat Rev Drug Discov, 14(10):721-731.
[63]MaranaMH, PoulsenR, ThormarEA, et al., 2022. Plastic nanoparticles cause mild inflammation, disrupt metabolic pathways, change the gut microbiota and affect reproduction in zebrafish: a full generation multi-omics study. J Hazard Mater, 424:127705.
[64]MuXY, QiSZ, WangH, et al., 2022. Bisphenol analogues induced metabolic effects through eliciting intestinal cell heterogeneous response. Environ Int, 165:107287.
[65]ParkKH, ChoiYJ, MinWK, et al., 2023. Particulate matter induces arrhythmia-like cardiotoxicity in zebrafish embryos by altering the expression levels of cardiac development- and ion channel-related genes. Ecotoxicol Environ Saf, 263:115201.
[66]PhilibertDA, LyonsDD, TierneyKB, 2021. Comparing the effects of unconventional and conventional crude oil exposures on zebrafish and their progeny using behavioral and genetic markers. Sci Total Environ, 770:144745.
[67]QianL, ZhangJ, ChenXG, et al., 2019. Toxic effects of boscalid in adult zebrafish (Danio rerio) on carbohydrate and lipid metabolism. Environ Pollut, 247:775-782.
[68]QiaoK, LiangZY, WangAX, et al., 2023. Waterborne tebuconazole exposure induces male-biased sex differentiation in zebrafish (Danio rerio) larvae via aromatase inhibition. Environ Sci Technol, 57(44):16764-16778.
[69]QiaoRX, ShengC, LuYF, et al., 2019. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Sci Total Environ, 662:246-253.
[70]QiuWH, ShaoHY, LeiPH, et al., 2018. Immunotoxicity of bisphenol S and F are similar to that of bisphenol A during zebrafish early development. Chemosphere, 194:1-8.
[71]QiuWH, FangMJ, LiuJY, et al., 2019. In vivo actions of Bisphenol F on the reproductive neuroendocrine system after long-term exposure in zebrafish. Sci Total Environ, 665:995-1002.
[72]QiuWH, LiuS, ChenHH, et al., 2021. The comparative toxicities of BPA, BPB, BPS, BPF, and BPAF on the reproductive neuroendocrine system of zebrafish embryos and its mechanisms. J Hazard Mater, 406:124303.
[73]QiuWH, ChenB, TangL, et al., 2022a. Antibiotic chlortetracycline causes transgenerational immunosuppression via NF-κB. Environ Sci Technol, 56(7):4251-4261.
[74]QiuWH, LiuT, LiuXJ, et al., 2022b. Enrofloxacin induces intestinal microbiota-mediated immunosuppression in zebrafish. Environ Sci Technol, 56(12):8428-8437.
[75]RodriguesP, GuimarãesL, CarvalhoAP, et al., 2023. Carbamazepine, venlafaxine, tramadol, and their main metabolites: toxicological effects on zebrafish embryos and larvae. J Hazard Mater, 448:130909.
[76]SantangeliS, MaradonnaF, ZanardiniM, et al., 2017. Effects of diisononyl phthalate on Danio rerio reproduction. Environ Pollut, 231:1051-1062.
[77]SantosD, LuzioA, FélixL, et al., 2022. Microplastics and copper induce apoptosis, alter neurocircuits, and cause behavioral changes in zebrafish (Danio rerio) brain. Ecotoxicol Environ Saf, 242:113926.
[78]SchmidS, WilliRA, Salgueiro-GonzálezN, et al., 2020. Effects of new generation progestins, including as mixtures and in combination with other classes of steroid hormones, on zebrafish early life stages. Sci Total Environ, 709:136262.
[79]ShiWJ, LongXB, LiSY, et al., 2022. Dydrogesterone and levonorgestrel at environmentally relevant concentrations have antagonist effects with rhythmic oscillation in brain and eyes of zebrafish. Aquat Toxicol, 248:106177.
[80]ShihYJ, SuCC, ChenCW, et al., 2016. Adsorption characteristics of nano-TiO2 onto zebrafish embryos and its impacts on egg hatching. Chemosphere, 154:109-117.
[81]SongWY, LuHJ, WuK, et al., 2020. Genetic evidence for estrogenicity of bisphenol A in zebrafish gonadal differentiation and its signalling mechanism. J Hazard Mater, 386:121886.
[82]SpenceR, GerlachG, LawrenceC, et al., 2008. The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev, 83(1):13-34.
[83]SunYM, WangXC, GuoW, et al., 2024. Life-time exposure to decabromodiphenyl ethane (DBDPE) caused transgenerational epigenetic alterations of thyroid endocrine system in zebrafish. Sci Total Environ, 950:175337.
[84]TarafdarA, SirohiR, BalakumaranPA, et al., 2022. The hazardous threat of Bisphenol A: toxicity, detection and remediation. J Hazard Mater, 423:127097.
[85]TengMM, ZhaoXL, WangCJ, et al., 2022. Polystyrene nanoplastics toxicity to zebrafish: dysregulation of the brain-intestine-microbiota axis. ACS Nano, 16(5):8190-8204.
[86]ThisseC, ThisseB, 2008. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc, 3(1):59-69.
[87]ThomasJK, JanzDM, 2015. Developmental and persistent toxicities of maternally deposited selenomethionine in zebrafish (Danio rerio). Environ Sci Technol, 49(16):10182-10189.
[88]TianDD, YuYH, YuYY, et al., 2023. Tris(2-chloroethyl) phosphate exerts hepatotoxic impacts on zebrafish by disrupting hypothalamic–pituitary–thyroid and gut–liver axes. Environ Sci Technol, 57(24):9043-9054.
[89]TomerR, KhairyK, AmatF, et al., 2012. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat Methods, 9(7):755-763.
[90]Torres-RuizM, de la ViejaA, de Alba GonzalezM, et al., 2021. Toxicity of nanoplastics for zebrafish embryos, what we know and where to go next. Sci Total Environ, 797:149125.
[91]TozerL, 2023. Water pollution ‘timebomb’ threatens global health. Nature, Online.
[92]VignetC, DevierMH, le MenachK, et al., 2014. Long-term disruption of growth, reproduction, and behavior after embryonic exposure of zebrafish to PAH-spiked sediment. Environ Sci Pollut Res, 21(24):13877-13887.
[93]VossenLE, ČervenýD, Sen SarmaO, et al., 2020. Low concentrations of the benzodiazepine drug oxazepam induce anxiolytic effects in wild-caught but not in laboratory zebrafish. Sci Total Environ, 703:134701.
[94]WangC, QianY, ZhangXF, et al., 2016. A metabolomic study of fipronil for the anxiety-like behavior in zebrafish larvae at environmentally relevant levels. Environ Pollut, 211:252-258.
[95]WangQP, ChenGL, TianLY, et al., 2023. Neuro- and hepato-toxicity of polystyrene nanoplastics and polybrominated diphenyl ethers on early life stages of zebrafish. Sci Total Environ, 857:159567.
[96]WangWW, ZhangJ, LiZ, et al., 2022. Bisphenol S exposure accelerates the progression of atherosclerosis in zebrafish embryo-larvae. J Hazard Mater, 426:128042.
[97]WangXH, QinYJ, LiXY, et al., 2021. Comprehensive interrogation of metabolic and bioenergetic responses of early-staged zebrafish (Danio rerio) to a commercial copper hydroxide nanopesticide. Environ Sci Technol, 55(19):13033-13044.
[98]WangYF, YuZQ, FanZP, et al., 2021. Cardiac developmental toxicity and transcriptome analyses of zebrafish (Danio rerio) embryos exposed to mancozeb. Ecotoxicol Environ Saf, 226:112798.
[99]WilliRA, Salgueiro-GonzálezN, FaltermannS, et al., 2019. Environmental glucocorticoids corticosterone, betamethasone and flumethasone induce more potent physiological than transcriptional effects in zebrafish embryos. Sci Total Environ, 672:183-191.
[100]WilsonLB, MoranIL, AndersonKA, et al., 2023. Advances in PAH mixture toxicology enabled by zebrafish. Curr Opin Toxicol, 34:100392.
[101]XuBT, PuMJ, JiangKL, et al., 2024. Maternal or paternal antibiotics? Intergenerational transmission and reproductive toxicity in zebrafish. Environ Sci Technol, 58(2):1287-1298.
[102]XuHY, LiCX, SuklaiP, et al., 2018. Differential sensitivities to dioxin-like compounds PCB 126 and PECDF between Tg(cyp1a:gfp) transgenic medaka and zebrafish larvae. Chemosphere, 192:24-30.
[103]XuKH, ZhangYD, HuangYM, et al., 2021. Toxicological effects of microplastics and phenanthrene to zebrafish (Danio rerio). Sci Total Environ, 757:143730.
[104]YinK, WangY, ZhaoHJ, et al., 2021. A comparative review of microplastics and nanoplastics: toxicity hazards on digestive, reproductive and nervous system. Sci Total Environ, 774:145758.
[105]YuJ, ChenL, WuB, 2023. Size-specific effects of microplastics and lead on zebrafish. Chemosphere, 337:139383.
[106]YuanZX, LiRX, LiSS, et al., 2023. Oxidative stress, neurotoxicity, and intestinal microbial regulation after a chronic zinc exposure: an experimental study on adult zebrafish (Danio rerio). Water Reuse, 13(1):82-96.
[107]ZhangJ, RenZM, ChenM, 2023. Immunotoxicity and transcriptome analyses of zebrafish (Danio rerio) embryos exposed to 6:2 FTSA. Toxics, 11(5):459.
[108]ZhangJG, MaDD, XiongQ, et al., 2021. Imidacloprid and thiamethoxam affect synaptic transmission in zebrafish. Ecotoxicol Environ Saf, 227:112917.
[109]ZhangL, ShenLL, HuangYZ, et al., 2023. Embryonic exposure to UV-328 impairs the cell cycle in zebrafish (Danio rerio) by inhibiting the p38 MAPK/p53/Gadd45a signaling pathway. Environ Sci Technol, 57(27):9965-9974.
[110]ZhangQL, DongZX, LuoZW, et al., 2020. The impact of mercury on the genome-wide transcription profile of zebrafish intestine. J Hazard Mater, 389:121842.
[111]ZhangR, WangM, ChenXP, et al., 2020. Combined toxicity of microplastics and cadmium on the zebrafish embryos (Danio rerio). Sci Total Environ, 743:140638.
[112]ZhangTX, ZhaoSJ, DongFF, et al., 2023. Novel insight into the mechanisms of neurotoxicity induced by 6׃6 PFPiA through disturbing the gut‒brain axis. Environ Sci Technol, 57(2):1028-1038.
[113]ZhaoG, SunHJ, ZhangT, et al., 2020. Copper induce zebrafish retinal developmental defects via triggering stresses and apoptosis. Cell Commun Signal, 18:45.
[114]ZhaoXL, HuangXY, PengWJ, et al., 2022. Chlorine disinfection byproduct of diazepam affects nervous system function and possesses gender-related difference in zebrafish. Ecotoxicol Environ Saf, 238:113568.
[115]ZhaoXY, LiuZT, ZhangYN, et al., 2024. Developmental effects and lipid disturbances of zebrafish embryos exposed to three newly recognized bisphenol A analogues. Environ Int, 189:108795.
[116]ZhaoYB, LiangJH, MengHY, et al., 2021. Rare earth elements lanthanum and praseodymium adversely affect neural and cardiovascular development in zebrafish (Danio rerio). Environ Sci Technol, 55(2):1155-1166.
[117]ZhouR, DingRC, YuQ, et al., 2024. Metformin attenuates neutrophil recruitment through the H3K18 lactylation/reactive oxygen species pathway in zebrafish. Antioxidants, 13(2):176.
[118]ZhouYX, GuoW, LeiL, et al., 2021. Bis(2-ethylhexyl)-tetrabromophthalate induces zebrafish obesity by altering the brain-gut axis and intestinal microbial composition. Environ Pollut, 290:118127.
[119]ZhuBR, LeiL, FuKY, et al., 2022. Neurotoxicity of tetrabromobisphenol A and SiO2 nanoparticle co-exposure in zebrafish and barrier function of the embryonic chorion. Sci Total Environ, 845:157364.
[120]ZhuYJ, HuJ, ZengSM, et al., 2023. l-Selenomethionine affects liver development and glucolipid metabolism by inhibiting autophagy in zebrafish embryos. Ecotoxicol Environ Saf, 252:114589.
[121]ZhuZ, WangJ, CaoQS, et al., 2022. Long-term BPA exposure leads to bone malformation and abnormal expression of MAPK/Wnt/FoxO signaling pathway genes in zebrafish offspring. Ecotoxicol Environ Saf, 245:114082.
[122]ZhuangJ, PanZJ, LiMQ, et al., 2020. BDE-47 induced apoptosis in zebrafish embryos through mitochondrial ROS-mediated JNK signaling. Chemosphere, 258:127385.
[123]ZindlerF, StollS, BaumannL, et al., 2020. Do environmentally relevant concentrations of fluoxetine and citalopram impair stress-related behavior in zebrafish (Danio rerio) embryos? Chemosphere, 261:127753.
Open peer comments: Debate/Discuss/Question/Opinion
<1>