Full Text:   <2037>

CLC number: TN91

On-line Access: 2019-12-10

Received: 2018-08-02

Revision Accepted: 2018-12-08

Crosschecked: 2019-07-16

Cited: 0

Clicked: 3645

Citations:  Bibtex RefMan EndNote GB/T7714


Debashis De


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.11 P.1578-1586


Nanoscale cryptographic architecture design using quantum-dot cellular automata

Author(s):  Bikash Debnath, Jadav Chandra Das, Debashis De

Affiliation(s):  Department of Computer Science and Engineering, Swami Vivekananda Institute of Science and Technology, West Bengal 700145, India; more

Corresponding email(s):   dr.debashis.de@gmail.com

Key Words:  Quantum-dot cellular automata (QCA), Majority gate cryptography, Encryption, Decryption, Nanorouter

Bikash Debnath, Jadav Chandra Das, Debashis De. Nanoscale cryptographic architecture design using quantum-dot cellular automata[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(11): 1578-1586.

@article{title="Nanoscale cryptographic architecture design using quantum-dot cellular automata",
author="Bikash Debnath, Jadav Chandra Das, Debashis De",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Nanoscale cryptographic architecture design using quantum-dot cellular automata
%A Bikash Debnath
%A Jadav Chandra Das
%A Debashis De
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 11
%P 1578-1586
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800458

T1 - Nanoscale cryptographic architecture design using quantum-dot cellular automata
A1 - Bikash Debnath
A1 - Jadav Chandra Das
A1 - Debashis De
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 11
SP - 1578
EP - 1586
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800458

quantum-dot cellular automata (QCA) based on cryptography is a new paradigm in the field of nanotechnology. The overall performance of QCA is high compared to traditional complementary metal-oxide semiconductor (CMOS) technology. To achieve data security during nanocommunication, a cryptography-based application is proposed. The devised circuit encrypts the input data and passes it to an output channel through a nanorouter cum data path selector, where the data is decrypted back to its original form. The results along with theoretical implication prove the accuracy of the circuit. Power dissipation and circuit complexity of the circuit have been analyzed.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Ahmadpour SS, Mosleh M, 2018. A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J Supercomput, 74(9):4696-4716.

[2]Angizi S, Sarmadi S, Sayedsalehi S, et al., 2015a. Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectr J, 46(1): 43-51.

[3]Angizi S, Moaiyeri MH, Farrokhi S, et al., 2015b. Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess Microsyst, 39(7): 512-520.

[4]Balali M, Rezai A, Balali H, et al., 2017. Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate. Results Phys, 7:1389-1395.

[5]Das JC, De D, 2012. Quantum dot-cellular automata based cipher text design for nano-communication. Proc Int Conf on Radar, Communication and Computing, p.224-229.

[6]Das JC, De D, 2016a. Novel low power reversible binary incrementer design using quantum-dot cellular automata. Microprocess Microsyst, 42:10-23.

[7]Das JC, De D, 2016b. Quantum-dot cellular automata based reversible low power parity generator and parity checker design for nanocommunication. Front Inform Technol Electron Eng, 17(3):224-236.

[8]Das JC, De D, 2017a. Circuit switching with quantum-dot cellular automata. Nano Commun Netw, 14:16-28.

[9]Das JC, De D, 2017b. Nanocommunication network design using QCA reversible crossbar switch. Nano Commun Netw, 13:20-33

[10]Das JC, De D, 2017c. Reversible binary subtractor design using quantum dot-cellular automata. Front Inform Technol Electron Eng, 18(9):1416-1429.

[11]Das JC, De D, 2017d. Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst Technol, 23(9):4155- 4168.

[12]Das S, De D, 2012. Nanocommunication using QCA: a data path selector cum router for efficient channel utilization. Proc Int Conf on Radar, Communication and Computing, p.43-47.

[13]Debnath B, Das JC, De D, 2017. Reversible logic-based image steganography using quantum dot cellular automata for secure nanocommunication. IET Circ Dev Syst, 11(1):58- 67.

[14]Debnath B, Das JC, De D, 2018. Design of image steganographic architecture using quantum-dot cellular automata for secure nanocommunication networks. Nano Commun Netw, 15:41-58.

[15]Delfs H, Knebl H, 2015. Symmetric-key cryptography. In: Delfs H, Knebl H (Eds.), Introduction to Cryptography. Springer Berlin Heidelberg.

[16]Heikalabad SR, Asfestani MN, Hosseinzadeh M, 2018. A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J Supercomput, 74(5):1994-2005.

[17]Iqbal J, Khanday FA, Shah NA, 2013. Design of quantum-dot cellular automata (QCA) based modular 2n-1-2n MUX- DEMUX. Proc IMPACT, p.189-193.

[18]Kahate A, 2008. Cryptography and Network Security. Tata McGraw Hill Education, India.

[19]Kamaraj A, Marichamy P, Abinaya M, 2015. Design of reversible logic based area efficient multilayer architecture router in QCA. Int J Appl Eng Res, 10(1):140-144.

[20]Karkaj ET, Heikalabad SR, 2017. Binary to gray and gray to binary converter in quantum-dot cellular automata. Optik, 130:981-989.

[21]Kianpour M, Sabbaghi-Nadooshan R, Navi K, 2014. A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J Comput Syst Sci, 80(7):1404-1414.

[22]Lent CS, Tougaw PD, 1997. A device architecture for computing with quantum dots. Proc IEEE, 85(4):541-557.

[23]Lent CS, Tougaw PD, Porod W, et al., 1993. Quantum cellular automata. Nanotechnology, 4(1):49-57.

[24]Liu WQ, Srivastava S, Lu L, et al., 2012. Are QCA cryptographic circuits resistant to power analysis attack? IEEE Trans Nanotechnol, 11(6):1239-1251.

[25]Mardiris VA, Karafyllidis IG, 2010. Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers. Int J Circ Theory Appl, 38(8):771-785.

[26]Mukhopadhyay D, Dinda S, Dutta P, 2011. Designing and implementation of quantum cellular automata 2:1 multiplexer circuit. Int J Comput Appl, 25(1):21-24.

[27]Orlov AO, Bernstein AGH, Lent CS, et al., 1997. Realization of a functional cell for quantum-dot cellular automata. Science, 277(5328):928-930.

[28]Orlov AO, Kummamuru R, Ramasubramaniam R, et al., 2001. Clocked quantum-dot cellular automata devices: experimental studies. Proc 1st IEEE Conf on Nanotechnology, p.425-430.

[29]Porod W, 1997. Quantum-dot devices and quantum-dot cellular automata. J Franklin Inst, 334(5-6):1147-1175.

[30]Porod W, Lent C, Bernstein GH, et al., 1999. Quantum-dot cellular automata: computing with coupled quantum dots. Int J Electron, 86(5):549-590.

[31]Pudi V, Sridharan K, 2015. A bit-serial pipelined architecture for high-performance DHT computation in quantum-dot cellular automata. IEEE Trans Very Large Scale Integr (VLSI) Syst, 23(10):2352-2356.

[32]Rashidi H, Rezai A, 2017. Design of novel efficient multiplexer architecture for quantum-dot cellular automata. J Nano Electron Phys, 9(1):01012.

[33]Rashidi H, Rezai A, Soltany S, 2016. High-performance multiplexer architecture for quantum-dot cellular automata. J Comput Electron, 15(3):968-981.

[34]Sardinha LHB, Costa AMM, Neto OPV, et al., 2013. Nanorouter: a quantum-dot cellular automata design. IEEE J Sel Areas Commun, 31(12):825-834.

[35]Sayedsalehi S, Azghadi MR, Angizi S, et al., 2015. Restoring and non-restoring array divider designs in quantum-dot cellular automata. Inform Sci, 311:86-101.

[36]Sen B, Dutta M, Sikdar BK, 2014. Efficient design of parity preserving logic in quantum-dot cellular automata targeting enhanced scalability in testing. Microelectr J, 45(2):239-248.

[37]Shah NA, Khanday FA, Bangi ZA, et al., 2011. Design of quantum-dot cellular automata (QCA) based modular 1 to 2n demultiplexers. In J Nanotechnol Appl, 5(1):47-58.

[38]Sridharan K, Pudi V, 2015. Design of Arithmetic Circuits in Quantum Dot Cellular Automata Nanotechnology. Springer, Cham, Germany.

[39]Tougaw PD, Lent CS, 1994. Logical devices implemented using quantum cellular automata. J Appl Phys, 75(3): 1818-1825.

[40]Walus K, Dysart TJ, Jullien GA, et al., 2004. QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol, 3(1):26-31.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE