Full Text:   <2084>

Summary:  <1624>

CLC number: TN386.1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2019-12-12

Cited: 0

Clicked: 5233

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiang-lei He

http://orcid.org/0000-0003-4995-0085

Feng Yang

http://orcid.org/0000-0003-2028-5704

Dan Wang

http://orcid.org/0000-0002-3515-4590

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.12 P.1698-1705

http://doi.org/10.1631/FITEE.1900363


Zirconia quantum dots for a nonvolatile resistive random access memory device


Author(s):  Xiang-lei He, Rui-jie Tang, Feng Yang, Mayameen S. Kadhim, Jie-xin Wang, Yuan Pu, Dan Wang

Affiliation(s):  State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; more

Corresponding email(s):   yf@swjtu.edu.cn, wangdan@mail.buct.edu.cn

Key Words:  Zirconia quantum dot, Resistive switching, Memory device, Spin coating


Xiang-lei He, Rui-jie Tang, Feng Yang, Mayameen S. Kadhim, Jie-xin Wang, Yuan Pu, Dan Wang. Zirconia quantum dots for a nonvolatile resistive random access memory device[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(12): 1698-1705.

@article{title="Zirconia quantum dots for a nonvolatile resistive random access memory device",
author="Xiang-lei He, Rui-jie Tang, Feng Yang, Mayameen S. Kadhim, Jie-xin Wang, Yuan Pu, Dan Wang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="12",
pages="1698-1705",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900363"
}

%0 Journal Article
%T Zirconia quantum dots for a nonvolatile resistive random access memory device
%A Xiang-lei He
%A Rui-jie Tang
%A Feng Yang
%A Mayameen S. Kadhim
%A Jie-xin Wang
%A Yuan Pu
%A Dan Wang
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 12
%P 1698-1705
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900363

TY - JOUR
T1 - Zirconia quantum dots for a nonvolatile resistive random access memory device
A1 - Xiang-lei He
A1 - Rui-jie Tang
A1 - Feng Yang
A1 - Mayameen S. Kadhim
A1 - Jie-xin Wang
A1 - Yuan Pu
A1 - Dan Wang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 12
SP - 1698
EP - 1705
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900363


Abstract: 
We propose a nonvolatile resistive random access memory device by employing nanodispersion of zirconia (ZrO2) quantum dots (QDs) for the formation of an active layer. The memory devices comprising a typical sandwich structure of Ag (top)/ZrO2 (active layer)/Ti (bottom) are fabricated using a facile spin-coating method. The optimized device exhibits a high resistance state/low resistance state resistance difference (about 10 Ω), a good cycle performance (the number of cycles larger than 100), and a relatively low conversion current (about 1 μA). Atomic force microscopy and scanning electron microscope are used to observe the surface morphology and stacking state of the ZrO2 active layer. Experimental results show that the ZrO2 active layer is stacked compactly and has a low roughness (Ra=4.49 nm) due to the uniform distribution of the ZrO2 QDs. The conductive mechanism of the Ag/ZrO2/Ti device is analyzed and studied, and the conductive filaments of Ag ions and oxygen vacancies are focused on to clarify the resistive switching memory behavior. This study offers a facile approach of memristors for future electronic applications.

氧化锆量子点用于非易失性电阻式随机存取存储器

摘要:提出一种利用氧化锆量子点作为有源层的非易失性电阻式随机存取器。通过旋涂法制备Ag(上)/ZrO2(有源层)/Ti(下)典型的三明治结构存储器件。该优化器件具有较高高/低电阻差(约10Ω),良好循环性能(循环数大于100),较低转化电流(约1 μA)。通过原子力显微镜和扫描电子显微镜观察ZrO2有源层表面形貌和堆积状态。实验结果表明,ZrO2有源层紧密堆积,且由于ZrO2量子点分布均匀,ZrO2有源层粗糙度较低(Ra=4.49 nm)。分析了Ag/ZrO2/Ti器件导电机理,并研究银离子导电丝和氧空位对电阻开关记忆行为的影响。该研究为忆阻器材料开发提供了一种简单方案。

关键词:氧化锆量子点;电阻开关;存储器件;旋涂法

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chua L, 2011. Resistance switching memories are memristors. Appl Phys A, 102(4):765-783.

[2]Craig J, 2018. Cybersecurity research—essential to a successful digital future. Engineering, 4(1):9-10.

[3]Emelyanov AV, Nikiruy KE, Demin VA, et al., 2019. Yttria-stabilized zirconia cross-point memristive devices for neuromorphic applications. Microelectron Eng, 215: 110988.

[4]Han PD, Sun B, Li J, et al., 2017. Ag filament induced non-volatile resistive switching memory behaviour in hexagonal MoSe2 nanosheets. J Coll Interf Sci, 505:148-153.

[5]Han WB, Chen XG, Li SF, et al., 2018. A novel non-volatile memory storage system for I/O-intensive applications. Front Inform Technol Electron Eng, 19(10):1291-1302.

[6]He XL, Tang RG, Pu Y, et al., 2019a. High-gravity-hydrolysis approach to transparent nanozirconia/silicone encapsulation materials of light emitting diodes devices for healthy lighting. Nano Energy, 62:1-10.

[7]He XL, Wang Z, Wang D, et al., 2019b. Sub-kilogram-scale synthesis of highly dispersible zirconia nanoparticles for hybrid optical resins. Appl Surf Sci, 491:505-516.

[8]Jiang H, Belkin D, Savel′ev SE, et al., 2017. A novel true random number generator based on a stochastic diffusive memristor. Nat Commun, 8(1):882.

[9]Kadhim MS, Yang F, Sun B, et al., 2018. A resistive switching memory device with a negative differential resistance at room temperature. Appl Phys Lett, 113(5):053502.

[10]Li XM, Tao L, Chen ZF, et al., 2017. Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl Phys Rev, 4(2):021306.

[11]Liang L, Li K, Xiao C, et al., 2015. Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device. J Am Chem Soc, 137(8): 3102-3108.

[12]Liu X, Lu YT, Yu J, et al., 2017. ONFS: a hierarchical hybrid file system based on memory, SSD, and HDD for high performance computers. Front Inform Technol Electron Eng, 18(12):1940-1971.

[13]Lyu MJ, Liu YW, Zhi YD, et al., 2015. Electric-field-driven dual vacancies evolution in ultrathin nanosheets realizing reversible semiconductor to half-metal transition. J Am Chem Soc, 137(47):15043-15048.

[14]Pan F, Gao S, Chen C, et al., 2014. Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater Sci Eng R Rep, 83:1-59.

[15]Panda D, Tseng TY, 2013. Growth, dielectric properties, and memory device applications of ZrO2 thin films. Thin Sol Film, 531:1-20.

[16]Siddiqui GU, Rehman MM, Choi KH, 2017. Resistive switching phenomena induced by the heterostructure composite of ZnSnO3 nanocubes interspersed ZnO nanowires. J Mater Chem C, 5(22):5528-5537.

[17]Sleiman A, Mabrook MF, Nejm RR, et al., 2012. Organic bistable devices utilizing carbon nanotubes embedded in poly (methyl methacrylate). J Appl Phys, 112(2):024509.

[18]Strukov DB, Snider GS, Stewart DR, et al., 2008. The missing memristor found. Nature, 453(7191):80-83.

[19]Sun B, Li HW, Wei LJ, et al., 2014. Hydrothermal synthesis and resistive switching behaviour of WO3/CoWO4 core-shell nanowires. Cryst Eng Comm, 16(42):9891-9895.

[20]Sun B, Zhu SH, Mao SS, et al., 2018a. From dead leaves to sustainable organic resistive switching memory. J Coll Interf Sci, 513:774-778.

[21]Sun B, Zhang XJ, Zhou GD, et al., 2018b. A flexible non-volatile resistive switching memory device based on ZnO film fabricated on a foldable PET substrate. J Coll Interf Sci, 520:19-24.

[22]Vescio G, Martín G, Crespo-Yepes A, et al., 2019. Low-power, high-performance, non-volatile inkjet-printed HfO2-based resistive random access memory: from device to nanoscale characterization. ACS Appl Mater Interf, 11(26):23659-23666.

[23]Vishwanath SK, Kim J, 2016. Resistive switching characteristics of all-solution-based Ag/TiO2/Mo-doped In2O3 devices for non-volatile memory applications. J Mater Chem C, 4(46):10967-10972.

[24]Wan T, Qu B, Du HW, et al., 2018. Digital to analog resistive switching transition induced by graphene buffer layer in strontium titanate based devices. J Coll Interf Sci, 512:767-774.

[25]Wang SY, Tsai CH, Lee DY, et al., 2011. Improved resistive switching properties of Ti/ZrO2/Pt memory devices for RRAM application. Microelectron Eng, 88(7):1628-1632.

[26]Wang ZR, Li C, Song WH, et al., 2019. Reinforcement learning with analogue memristor arrays. Nat Electron, 2(3):115-124.

[27]Wu Y, Wei Y, Huang Y, et al., 2017. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res, 10(5):1584-1594.

[28]Xia Y, Zhang C, Wang JX, et al., 2018. Synthesis of transparent aqueous ZrO2 nanodispersion with a controllable crystalline phase without modification for a high-refractive-index nanocomposite film. Langmuir, 34(23): 6806-6813.

[29]Yan XB, Li YC, Zhao JH, et al., 2016. Roles of grain boundary and oxygen vacancies in Ba0.6Sr0.4TiO3 films for resistive switching device application. Appl Phys Lett, 108(3): 033108.

[30]Yu YM, Yang F, Mao SS, et al., 2018. Effect of anodic oxidation time on resistive switching memory behavior based on amorphous TiO2 thin films device. Chem Phys Lett, 706:477-482.

[31]Zhang YY, Yang T, Yan XB, et al., 2017. A metal/ Ba0.6Sr0.4TiO3/SiO2/Si single film device for charge trapping memory towards a large memory window. Appl Phys Lett, 110(22):223501.

[32]Zhao H, Dong ZP, Tian H, et al., 2017. Atomically thin femtojoule memristive device. Adv Mater, 29(47): 1703232.

[33]Zhou GD, Sun B, Zhou AK, et al., 2017. A larger nonvolatile bipolar resistive switching memory behaviour fabricated using eggshells. Curr Appl Phys, 17(2):235-239.

[34]Zhou J, Li PG, Zhou YH, et al., 2018. Toward new-generation intelligent manufacturing. Engineering, 4(1):11-20.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE