Full Text:   <2572>

CLC number: TN819.1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2020-01-19

Cited: 0

Clicked: 5768

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Bao-hua Sun

https://orcid.org/0000-0003-1237-5363

Qiu-yan Liang

https://orcid.org/0000-0002-2553-6173

Gao-nan Zhou

https://orcid.org/0000-0003-4867-5763

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.1 P.144-158

http://doi.org/10.1631/FITEE.1900501


Miniaturized Rotman lens with applications to wireless communication


Author(s):  Bao-hua Sun, Qiu-yan Liang, Gao-nan Zhou

Affiliation(s):  National Key Laboratory of Science and Technology on Antenna and Microwave, Xidian University, Xian 710071, China

Corresponding email(s):   bhsun@mail.xidian.edu.cn

Key Words:  Rotman lens, Miniaturization, Multibeam, Beamformer, Wireless communication


Bao-hua Sun, Qiu-yan Liang, Gao-nan Zhou. Miniaturized Rotman lens with applications to wireless communication[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(1): 144-158.

@article{title="Miniaturized Rotman lens with applications to wireless communication",
author="Bao-hua Sun, Qiu-yan Liang, Gao-nan Zhou",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="1",
pages="144-158",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900501"
}

%0 Journal Article
%T Miniaturized Rotman lens with applications to wireless communication
%A Bao-hua Sun
%A Qiu-yan Liang
%A Gao-nan Zhou
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 1
%P 144-158
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900501

TY - JOUR
T1 - Miniaturized Rotman lens with applications to wireless communication
A1 - Bao-hua Sun
A1 - Qiu-yan Liang
A1 - Gao-nan Zhou
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 1
SP - 144
EP - 158
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900501


Abstract: 
rotman lens is a type of beamforming network with many advantages, such as true-time delay characteristic, multibeam capability, and wide bandwidth. rotman lens has been used in a wide range of applications in today’s wireless communication systems. However, the size of a conventional rotman lens is considerably large. So, difficulties may arise with respect to its integration with base station antennas in wireless communication systems. In this study, three techniques for the miniaturization of a rotman lens, i.e., Chebyshev impedance transformers, power dividers, and truncated ports with energy distribution slots, are introduced to design the rotman lens to reduce the size of the ports and hence the total area occupied by the rotman lens. Simulation and measurement results indicate that good impedance matching between the lens body and its feed lines can be achieved. Using the proposed truncated ports with energy distribution slots, the size of the rotman lens can be greatly reduced without performance degradation or production cost increment. Moreover, two possible applications of the proposed miniaturized rotman lens to wireless communication systems are investigated. rotman lens can not only provide multiple phase difference signals along the array ports to realize multibeams, but also generate high-performance formed beams such as flat-topped radiation pattern.

微型罗特曼透镜在无线通信中的应用

孙保华,梁秋艳,周高楠
西安电子科技大学天线与微波技术国家重点实验室,中国西安市,710071

摘要:罗特曼透镜是一种具有实时延迟特性、多波束性能和宽带等优点的波束成形网络,在当今无线通信系统中得到广泛应用。然而,在无线通信系统中,传统罗特曼透镜尺寸相当大,可能会影响其与基站天线的集成。介绍3种微型化罗特曼透镜技术(切比雪夫阻抗变换器、功率分配器和带能量分配槽的截断端口)设计透镜,减小端口尺寸,从而减小罗特曼透镜所占总面积。仿真和测量结果表明,该方法可实现透镜主体与馈线之间良好的阻抗匹配。利用该带能量分配槽的截断端口,可大大减小罗特曼透镜尺寸,同时不降低透镜性能或增加生产成本。此外,研究了该微型罗特曼透镜在无线通信系统中两种可能的应用。罗特曼透镜不仅可沿阵列端口提供多个相位差信号实现多波束,还可生成平顶辐射等高性能成形波束。

关键词:罗特曼透镜;微型化;多波束;波束形成器;无线通信

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Attaran A, Rashidzadeh R, Kouki A, 2016. 60 GHz low phase error Rotman lens combined with wideband microstrip antenna array using LTCC technology. IEEE Trans Antenn Propag, 64(12):5172-5180.

[2]Cheng YJ, Hong W, Wu K, 2010. Design of a substrate integrated waveguide modified R-KR lens for millimetre- wave application. IET Microw Antenn Propag, 4(4):484- 491.

[3]Darvazehban A, Manoochehri O, Ali Salari M, et al., 2017. Ultra-wideband scanning antenna array with Rotman lens. IEEE Trans Microw Theory Techn, 65(9):3435-3442.

[4]Eom SY, Kim SK, Yook JG, 2008. Multilayered disk array structure surrounded by a dielectric ring for shaping a flat-topped radiation pattern. IEEE Antenn Wirel Propag Lett, 7:374-376.

[5]Hansen RC, 1991. Design trades for Rotman lenses. IEEE Trans Antenn Propag, 39(4):464-472.

[6]Ibbotson A, de Villiers DIL, Palmer KD, 2013. A defocused Rotman lens with reduced conjugate port coupling. IEEE Microw Wirel Compon Lett, 23(8):394-396.

[7]Lee W, Kim J, Cho CS, et al., 2010. Beamforming lens antenna on a high resistivity silicon wafer for 60 GHz WPAN. IEEE Trans Antenn Propag, 58(3):706-713.

[8]Liang QY, Zhou GN, Sun BH, et al., 2018. Compact microstrip Rotman lens using Chebyshev impedance transformers. Progr Electromag Res Lett, 76:1-6.

[9]Liang QY, Sun BH, Zhou GN, et al., 2019. Design of compact Rotman lens using truncated ports with energy distribution slots. IEEE Access, 7:120766-120773.

[10]Liu Y, Yang H, Jin ZS, et al., 2018. Compact Rotman lens-fed slot array antenna with low sidelobes. IET Microw Antenn Propag, 12(5):656-661.

[11]Mailloux RJ, 1993. Phased Array Antenna. Artech House, London, UK.

[12]Musa L, Smith MS, 1989. Microstrip port design and sidewall absorption for printed Rotman lenses. IEE Proc H Microw Antenn Propag, 136(1):53-59.

[13]Nguyen NT, Sauleau R, Le Coq L, 2011. Reduced-size double- shell lens antenna with flat-top radiation pattern for indoor communications at millimeter waves. IEEE Trans Antenn Propag, 59(6):2424-2429.

[14]Rotman W, Turner RF, 1963. Wide-angle microwave lens for line source applications. IEEE Trans Antenn Propag, 11(6):623-632.

[15]Scattone F, Ettorre M, Sauleau R, et al., 2015. Optimization procedure for planar leaky-wave antennas with flat- topped radiation patterns. IEEE Trans Antenn Propag, 63(12):5854-5859.

[16]Schulwitz L, Mortazawi A, 2008. A new low loss Rotman lens design using a graded dielectric substrate. IEEE Trans Microw Theory Techn, 56(12):2734-2741.

[17]Skobelev SP, 1998. Methods of constructing optimum phased-array antennas for limited field of view. IEEE Antenn Propag Mag, 40(2):39-50.

[18]Sun L, Zhang GX, Sun BH, 2018. Method of synthesizing orthogonal beam-forming networks using QR decomposition. IEEE Access, 7:325-331.

[19]Ta SX, Choo H, Park I, 2017. Broadband printed-dipole antenna and its arrays for 5G applications. IEEE Antenn Wirel Propag Lett, 16:2183-2186.

[20]Tekkouk K, Ettorre M, Le Coq L, et al., 2016. Multibeam SIW slotted waveguide antenna system fed by a compact dual- layer Rotman lens. IEEE Trans Antenn Propag, 64(2): 504-514.

[21]Vo Dai TK, Kilic O, 2016. Compact Rotman lens structure configurations to support millimeter wave devices. Progr Electromag Res B, 71(1):91-106.

[22]Vo Dai TK, Nguyen T, Kilic O, 2017. A compact microstrip Rotman lens design. United States National Committee of National Radio Science Meeting, p.1-2.

[23]Young L, 1962. Stepped-impedance transformers and filter prototypes. IRE Trans Microw Theory Techn, 10(5):339- 359.

[24]Zhang Y, Christie S, Fusco VF, et al., 2012. Reconfigurable beam forming using phase-aligned Rotman lens. IET Microw Antenn Propag, 6(3):326-330.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE