Full Text:   <2664>

CLC number: O153.3

On-line Access: 

Received: 2004-11-22

Revision Accepted: 2005-01-12

Crosschecked: 0000-00-00

Cited: 1

Clicked: 5366

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2006 Vol.7 No.2 P.210-215


On closed weak supplemented modules

Author(s):  Zeng Qing-yi, Shi Mei-hua

Affiliation(s):  Department of Mathematics, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   zqy67@163.com

Key Words:  Closed submodules, Closed weak supplemented, Small submodule

Zeng Qing-yi, Shi Mei-hua. On closed weak supplemented modules[J]. Journal of Zhejiang University Science A, 2006, 7(2): 210-215.

@article{title="On closed weak supplemented modules",
author="Zeng Qing-yi, Shi Mei-hua",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T On closed weak supplemented modules
%A Zeng Qing-yi
%A Shi Mei-hua
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 2
%P 210-215
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A0210

T1 - On closed weak supplemented modules
A1 - Zeng Qing-yi
A1 - Shi Mei-hua
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 2
SP - 210
EP - 215
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A0210

A module M is called closed weak supplemented if for any closed submodule N of M, there is a submodule K of M such that M=K+N and KN<<M. Any direct summand of closed weak supplemented module is also closed weak supplemented. Any nonsingular image of closed weak supplemented module is closed weak supplemented. Nonsingular V-rings in which all nonsingular modules are closed weak supplemented are characterized in Section 4.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Alizade, R., Büyükasik, E., 2003. Cofinitely weak supplemented modules. Comm. Alg., 31(11):5377-5390.

[2] Chatters, A.W., Khuri, S.M., 1980. Endomorphism rings of modules over nonsingular CS rings. J. London Math. Soc.(2), 21:434-444.

[3] Goodearl, K.R., 1976. Ring Theory. New York and Basel.

[4] Harmanci, A., Keskin, D., Smith, P.F., 1999. On ⊕-supplemented modules. Acta Math. Hungar., 83(1/2):161-169.

[5] Wisbauer, R., 1991. Foundations of Modules and Rings Theory. Gordon and Brench.

[6] Wisbauer, R., 1996. Modules and Algebras: Bi-module Structure and Group Actions on Algebras. Pitman Monographs and Surveys in Pure and Applied Mathematics 81.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE