CLC number: TP273
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 1
Clicked: 5890
Wei QIAN, Guo-jiang SHEN, You-xian SUN. Dynamical output feedback stabilization for neutral systems with mixed delays[J]. Journal of Zhejiang University Science A, 2008, 9(8): 1043-1049.
@article{title="Dynamical output feedback stabilization for neutral systems with mixed delays",
author="Wei QIAN, Guo-jiang SHEN, You-xian SUN",
journal="Journal of Zhejiang University Science A",
volume="9",
number="8",
pages="1043-1049",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0720044"
}
%0 Journal Article
%T Dynamical output feedback stabilization for neutral systems with mixed delays
%A Wei QIAN
%A Guo-jiang SHEN
%A You-xian SUN
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 8
%P 1043-1049
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0720044
TY - JOUR
T1 - Dynamical output feedback stabilization for neutral systems with mixed delays
A1 - Wei QIAN
A1 - Guo-jiang SHEN
A1 - You-xian SUN
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 8
SP - 1043
EP - 1049
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0720044
Abstract: This paper is concerned with the issue of stabilization for the linear neutral systems with mixed delays. The attention is focused on the design of output feedback controllers which guarantee the asymptotical stability of the closed-loop systems. Based on the model transformation of neutral type, the Lyapunov-Krasovskii functional method is employed to establish the delay-dependent stability criterion. Then, through the controller parameterization and some matrix transformation techniques, the desired parameters are determined under the delay-dependent design condition in terms of linear matrix inequalities (LMIs), and the desired controller is explicitly formulated. A numerical example is given to illustrate the effectiveness of the proposed method.
[1] Choi, H.H., Chung, M.J., 1997. An LMI approach to H∞ controller design for linear time-delay systems. Automatica, 33(4):737-739.
[2] El Ghaoui, L., Oustry, F., AitRami, M., 1997. A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Trans. on Automatic Control, 42(8):1171-1176.
[3] Fridman, E., Shaked, U., 2001. New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Syst. Control Lett., 43(4):309-319.
[4] Fridman, E., Shaked, U., 2002. A descriptor system approach to H∞ control of linear time-delay systems. IEEE Trans. on Automatic Control, 47(2):253-270.
[5] Gahinet, P., Apkarian, P., 1994. A linear matrix inequality approach to H∞ control. Int. J. Rob. Nonl. Control, 4(4):421-448.
[6] Gao, H., Wang, C., 2003. Comments and further results on “A descriptor system approach to H∞ control of linear time-delay systems”. IEEE Trans. on Automatic Control, 48(3):520-525.
[7] Gao, H., Lam, J., Wang, C., Wang, Y., 2004. Delay-dependent output-feedback stabilization of discrete-time systems with time-varying state delay. IEE Proc.-Control Theory Appl., 151(6):691-698.
[8] Gu, K., 2000. An Integral Inequality in the Stability Problem of Time-delay Systems. Proc. IEEE Conf. on Decision Control, Sydney, Australia, p.2805-2810.
[9] Gu, K., 2001. A further refinement of discretized Lyapunov functional method for the stability of time-delay systems. Int. J. Control, 74(10):967-976.
[10] Gu, K., Kharitonov, V.L., Chen, J., 2003. Stability of Time-delay Systems. Birkhauser, Boston.
[11] Hale, J., Verduyn, L.S.M., 1993. Introduction to Functional Differential Equations. Springer-Verlag, New York.
[12] He, Y., Wu, M., She, J.H., Liu, G.P., 2004. Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties. IEEE Trans. on Automatic Control, 49(5):828-832.
[13] Iwasaki, T., Skelton, R.E., 1994. All controllers for the general H∞ control problem: LMI existence conditions and state space formulas. Automatica, 30(8):1307-1317.
[14] Jeung, E.T., Kim, J.H., Park, H.B., 1998. H∞ output feedback controller design for linear systems with time-varying delayed state. IEEE Trans. on Automatic Control, 43(7):971-974.
[15] Kharitonov, V.L., 1999. Robust stability analysis of time delay systems: a survey. Annu. Rev. Control, 23:185-196.
[16] Lien, C.H., Yu, K.W., Hsieh, J.G., 2000. Stability conditions for a class of neutral systems with multiple time delays. J. Math. Anal. Appl., 245(1):20-27.
[17] Mahmoud, M., 2000. Robust H∞ control of linear neutral systems. Automatica, 36(5):757-764.
[18] Niculescu, S.I., 2000. Further Remarks on Delay-dependent Stability of Linear Neutral Systems. Proc. Mathematical Theory of Networks and Systems, Perpignan, France.
[19] Niculescu, S.I., 2001. Delay Effects on Stability: A Robust Control Approach. Springer-Verlag, New York.
[20] Palhares, R.M., Campos, C.D., Ekel, P.Ya., Leles, M.C.R., D'Angelo, M.F.S.V., 2005. Delay-dependent robust H∞ control of uncertain linear systems with lumped delays. IEE Proc.-Control Theory Appl., 152(1):27-33.
[21] Xu, S., Chen, T., 2004. Robust H∞ control for uncertain discrete-time systems with time-varying delays via exponential output feedback controllers. Syst. Control Lett., 51:171-183.
[22] Xue, X., Qiu, D., 2000. Robust H∞ compensator design for time-delay systems with norm-bounded time-varying uncertainties. IEEE Trans. on Automatic Control, 45(7):1363-1369.
[23] Yue, D., Won, S., Kwon, O., 2003. Delay dependent stability of neutral systems with time delay: an LMI approach. IEE Proc.-Control Theory Appl., 150(1):23-27.
Open peer comments: Debate/Discuss/Question/Opinion
<1>