Full Text:   <3789>

CLC number: TB3; V25

On-line Access: 2010-10-05

Received: 2010-04-15

Revision Accepted: 2010-08-12

Crosschecked: 0000-00-00

Cited: 13

Clicked: 6236

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2010 Vol.11 No.10 P.727-737

http://doi.org/10.1631/jzus.A1000171


Fatigue and fracture behavior of nickel-based superalloy Inconel 718 up to the very high cycle regime


Author(s):  Xian-feng Ma, Zheng Duan, Hui-ji Shi, Ryosuke Murai, Eiichi Yanagisawa

Affiliation(s):  Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace, Tsinghua University, Beijing 100084, China, Mitsubishi Heavy Industries, Ltd., Tokyo, Japan

Corresponding email(s):   maxianfeng@gmail.com, shihj@mail.tsinghua.edu.cn

Key Words:  Nickel-based superalloy, High cycle fatigue (HCF), Fatigue crack initiation, Crack growth, Life prediction


Xian-feng Ma, Zheng Duan, Hui-ji Shi, Ryosuke Murai, Eiichi Yanagisawa. Fatigue and fracture behavior of nickel-based superalloy Inconel 718 up to the very high cycle regime[J]. Journal of Zhejiang University Science A, 2010, 11(10): 727-737.

@article{title="Fatigue and fracture behavior of nickel-based superalloy Inconel 718 up to the very high cycle regime",
author="Xian-feng Ma, Zheng Duan, Hui-ji Shi, Ryosuke Murai, Eiichi Yanagisawa",
journal="Journal of Zhejiang University Science A",
volume="11",
number="10",
pages="727-737",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000171"
}

%0 Journal Article
%T Fatigue and fracture behavior of nickel-based superalloy Inconel 718 up to the very high cycle regime
%A Xian-feng Ma
%A Zheng Duan
%A Hui-ji Shi
%A Ryosuke Murai
%A Eiichi Yanagisawa
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 10
%P 727-737
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000171

TY - JOUR
T1 - Fatigue and fracture behavior of nickel-based superalloy Inconel 718 up to the very high cycle regime
A1 - Xian-feng Ma
A1 - Zheng Duan
A1 - Hui-ji Shi
A1 - Ryosuke Murai
A1 - Eiichi Yanagisawa
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 10
SP - 727
EP - 737
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000171


Abstract: 
The fatigue and fracture behavior of nickel-based superalloy Inconel 718 was investigated up to the very high cycle regime under rotary bending tests at room temperature. It was found that this superalloy can still fracture after exceeding 107 cycles. Fractographic analysis revealed that there was a transition from fatigue crack initiation at multi-sites to single initiation with decreasing stress levels. The fracture surface can be divided into four areas according to the appearance, associated with fracture mechanics analysis of the corresponding stress intensity factors. The fracture mechanism dominant in each area was disclosed by scanning electron microscope examination and analyzed in comparison with those obtained from the crack growth tests. Subsequently, life prediction modeling was proposed by estimating the crack initiation and propagation stage respectively. It was found that Chan (2003)’s model for initiation life and the Paris law for growth life can provide comparable predictions against the experimental life.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alexandre, F., Deyber, S., Pineau, A., 2004. Modelling the optimum grain size on the low cycle fatigue life of a Ni based superalloy in the presence of two possible crack initiation sites. Scripta Materialia, 50(1):25-30.

[2]Anderson, T.L., 1991. Fracture Mechanics: Fundamentals and Applications. CRC Press, Colorado, USA.

[3]Andersson, H., Persson, C., 2004. In-situ SEM study of fatigue crack growth behaviour in IN718. International Journal of Fatigue, 26(3):211-219.

[4]Antolovich, S.D., Jayaraman, N., 1983. The Effect of Microstructure on Fatigue Behavior of Nickel Base Alloys. Plenum Press, NY, USA.

[5]Bache, M.R., Evans, W.J., Hardy, M.C., 1999. The effects of environment and loading waveform on fatigue crack growth in Inconel 718. International Journal of Fatigue, 21(Suppl. 1):69-77.

[6]Chai, G.C., 2006. The formation of subsurface non-defect fatigue crack origins. International Journal of Fatigue, 28(11):1533-1539.

[7]Chan, K.S., 2003. A microstructure-based fatigue-crack-initiation model. Metallurgical and Materials Transactions A, 34(1):43-58.

[8]Chan, K.S., Leverant, G.R., 1987. Elevated-temperature fatigue crack-growth behavior of Mar-M200 single-crystals. Metallurgical and Materials Transactions A, 18(4):593-602.

[9]Chaussumier, M., Shahzad, M., Mabru, M., Chieragatti, R., Rezaï-Aria, F., 2010. A fatigue multi-site cracks model using coalescence, short and long crack growth laws, for anodized aluminum alloys. Procedia Engineering, 2(1):995-1004.

[10]Chen, Q., Kawagoishi, N., Nisitani, H., 2000. Evaluation of fatigue crack growth rate and life prediction of Inconel 718 at room and elevated temperatures. Materials Science and Engineering: A, 277(1-2):250-257.

[11]Chen, Q., Kawagoishi, N., Wang, Q.Y., Yan, N., Ono, T., Hashiguchi, G., 2005. Small crack behavior and fracture of nickel-based superalloy under ultrasonic fatigue. International Journal of Fatigue, 27(10-12):1227-1232.

[12]Chu, Z.K., Yu, J.J., Sun, X.F., Guan, H.R., Hu, Z.Q., 2008. High temperature low cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ951. Materials Science and Engineering: A, 488(1-2):389-397.

[13]Fedelich, B., 1998. A stochastic theory for the problem of multiple surface crack coalescence. International Journal of Fracture, 91:23-45.

[14]Forsyth, P.J.E., 1957. Slip-band damage and extrusion. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 242(1229):198-202.

[15]Fournier, B., Sauzay, M., Caes, C., Noblecourt, M., Mottot, M., Bougault, A., Rabeau, V., Man, J., Gillia, O., Lemoine, P., Pineau, A., 2008. Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel. Part III: Lifetime prediction. International Journal of Fatigue, 30(10-11):1797-1812.

[16]Fournier, D., Pineau, A., 1977. Low cycle fatigue behavior of Inconel 718 at 298 K and 823 K. Metallurgical and Materials Transactions A, 8(7):1095-1105.

[17]He, Y.H., Yu, H.C., Guo, W.B., Shen, L.L., Su, B., 2006. Experimental study on fatigue crack growth behavior of direct aging GH4169 superalloy. Journal of Aerospace Power, 21(2):349-353 (in Chinese).

[18]Kobayashi, K., Yamaguchi, K., Hayakawa, M., Kimura, M., 2005. Grain size effect on high-temperature fatigue properties of alloy718. Materials Letters, 59(2-3):383-386.

[19]Leo Prakash, D.G.L., Walsh, M.J., Maclachlan, D., Korsunsky, A.M., 2009. Crack growth micro-mechanisms in the IN718 alloy under the combined influence of fatigue, creep and oxidation. International Journal of Fatigue, 31(11-12):1966-1977.

[20]Ma, X.F., Shi, H.J., Gu, J.L., Wang, Z.X., Harders, H., Malow, T., 2008. Temperature effect on low-cycle fatigue behaviour of nickel-based single crystalline superalloy. Acta Mechanica Solida Sinica, 21(4):289-297.

[21]Masuda, C., Tanaka, Y., 1986. Relationship between fatigue strength and hardness for high strength steels. Transaction of the Japan Society Mechnical Engineers-Part A, 52:847-852.

[22]Mercer, C., Soboyejo, A.B.O., Soboyejo, W.O., 1999. Micromechanisms of fatigue crack growth in a forged Inconel 718 nickel-based superalloy. Materials Science and Engineering: A, 270(2):308-322.

[23]Murakami, Y., Kawakami, K., Duckworth, W.E., 1991. Quantitative-evaluation of effects of shape and size of artificially introduced alumina particles on the fatigue-strength of 1.5Ni-Cr-Mo (En24) steel. International Journal of Fatigue, 13(6):489-499.

[24]Pineau, A., 1989. Mechanisms of Creep-fatigue Interactions, Advances in Fatigue Science and Technology. Kluwer Academic, Dordrecht.

[25]Reger, M., Remy, L., 1988a. High-temperature, low-cycle fatigue of IN-100 superalloy. 1. Influence of frequency and environment at high-temperatures. Materials Science and Engineering: A, 101:55-63.

[26]Reger, M., Remy, L., 1988b. High-temperature, low-cycle fatigue of IN-100 superalloy. 1. Influence of temperature on the low-cycle fatigue behavior. Materials Science and Engineering: A, 101:47-54. [doi:10.1016/0921-5093(88) 90049-4]

[27]Remy, L., Alam, A., Haddar, N., Köster, A., Marchal, N., 2007. Growth of small cracks and prediction of lifetime in high-temperature alloys. Materials Science and Engineering: A, 468-470:40-50.

[28]Sakai, T., Sato, Y., Oguma, N., 2002. Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue. Fatigue & Fracture of Engineering Materials & Structures, 25(8-9):765-773.

[29]Sakai, T., Sakai, T., Okada, K., Furuichi, M., Nishikawa, I., Sugeta, A., 2006. Statistical fatigue properties of SCM435 steel in ultra-long-life regime based on JSMS database on fatigue strength of metallic materials. International Journal of Fatigue, 28(11):1486-1492.

[30]Shiozawa, K., Lu, L., Ishihara, S., 2001. S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel. Fatigue & Fracture of Engineering Materials & Structures, 24(12):781-790.

[31]Socie, D.F., 1983. Critical Plane Approaches for Multiaxial Fatigue Damage Assessment. ASTM, Philadelphia.

[32]Suresh, S., 1998. Fatigue of Materials. Cambridge University Press, Cambridge, UK.

[33]Tanaka, K., Mura, T., 1981. A dislocation model for fatigue crack initiation. Journal of Applied Mechanics-Transactions of the ASME, 48(1):97-103.

[34]Tomkins, B., 1968. Fatigue crack propagation: an analysis. Philosophical Magazine, 18:1041-1066.

[35]Venkataraman, G., Chung, Y.W., Mura, T., 1991. Application of minimum energy formalism in a multiple slip band model for fatigue—II. Crack nucleation and derivation of a generalised Coffin-Manson law. Acta Metallurgica et Materialia, 39(11):2631-2638.

[36]Wang, Q.Y., Bathias, C., Kawagoishi, N., Chen, Q., 2002. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength. International Journal of Fatigue, 24(12):1269-1274.

[37]Wang, Q.Y., Kawagoishi, N., Chen, Q., 2006. Fatigue and fracture behaviour of structural Al-alloys up to very long life regimes. International Journal of Fatigue, 28(11):1572-1576.

[38]Yan, N., Kawagoishi, N., Chen, Q., Wang, Q.Y., Nishitani, H., Kondo, E., 2003. Fatigue properties of Inconel 718 in long life region at elevated temperature. Key Engineering Materials, 243-244:321-326.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE