Full Text:   <4920>

Summary:  <2728>

CLC number: TU45

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-07-10

Cited: 8

Clicked: 10146

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.8 P.589-602

http://doi.org/10.1631/jzus.A1200301


Predicting crest settlement in concrete face rockfill dams using adaptive neuro-fuzzy inference system and gene expression programming intelligent methods


Author(s):  Danial Behnia1, Kaveh Ahangari1, Ali Noorzad2, Sayed Rahim Moeinossadat1

Affiliation(s):  1. Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; more

Corresponding email(s):   danial.behnia@yahoo.com

Key Words:  Concrete face rockfill dam (CFRD), Crest settlement, Adaptive neuro-fuzzy inference system (ANFIS), Gene expression programming (GEP)


Danial Behnia, Kaveh Ahangari, Ali Noorzad, Sayed Rahim Moeinossadat. Predicting crest settlement in concrete face rockfill dams using adaptive neuro-fuzzy inference system and gene expression programming intelligent methods[J]. Journal of Zhejiang University Science A, 2013, 14(8): 589-602.

@article{title="Predicting crest settlement in concrete face rockfill dams using adaptive neuro-fuzzy inference system and gene expression programming intelligent methods",
author="Danial Behnia, Kaveh Ahangari, Ali Noorzad, Sayed Rahim Moeinossadat",
journal="Journal of Zhejiang University Science A",
volume="14",
number="8",
pages="589-602",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200301"
}

%0 Journal Article
%T Predicting crest settlement in concrete face rockfill dams using adaptive neuro-fuzzy inference system and gene expression programming intelligent methods
%A Danial Behnia
%A Kaveh Ahangari
%A Ali Noorzad
%A Sayed Rahim Moeinossadat
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 8
%P 589-602
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200301

TY - JOUR
T1 - Predicting crest settlement in concrete face rockfill dams using adaptive neuro-fuzzy inference system and gene expression programming intelligent methods
A1 - Danial Behnia
A1 - Kaveh Ahangari
A1 - Ali Noorzad
A1 - Sayed Rahim Moeinossadat
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 8
SP - 589
EP - 602
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200301


Abstract: 
This paper deals with the estimation of crest settlement in a concrete face rockfill dam (CFRD), utilizing intelligent methods. Following completion of dam construction, considerable movements of the crest and the body of the dam can develop during the first impoundment of the reservoir. Although there is vast experience worldwide in CFRD design and construction, few accurate experimental relationships are available to predict the settlement in CFRD. The goal is to advance the development of intelligent methods to estimate the subsidence of dams at the design stage. Due to dam zonification and uncertainties in material properties, these methods appear to be the appropriate choice. In this study, the crest settlement behavior of CFRDs is analyzed based on compiled data of 24 CFRDs constructed during recent years around the world, along with the utilization of gene expression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS) methods. In addition, dam height (H), shape factor (S f), and time (t, time after first operation) are also assessed, being considered major factors in predicting the settlement behavior. From the relationships proposed, the values of R 2 for both equations of GEP (with and without constant) were 0.9603 and 0.9734, and for the three approaches of ANFIS (grid partitioning (GP), subtractive clustering method (SCM), and fuzzy c-means clustering (FCM)) were 0.9693, 0.8657, and 0.8848, respectively. The obtained results indicate that the overall behavior evaluated by this approach is consistent with the measured data of other CFRDs.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Australian National Committee on Large Dams Incorporated, 1991. Guidelines on Concrete-faced Rockfill Dams, Available from http://www.ancold.org.au, Sydney, Australia :

[2] Beiki, M., Bashari, A., Majdi, A., 2010. Genetic programming approach for estimating the deformation modulus of rock mass using sensitivity analysis by neural network. International Journal of Rock Mechanics & Mining Sciences, 47(7):1091-1103. 


[3] Chinese National Committee on Large Dams, 1999. Design Code for CFRDs. , (in Chinese), Beijing, China :

[4] Chintalapudi, K.K., Kam, M., 1998. A Noise Resistant Fuzzy C-means Algorithm for Clustering. , IEEE Conference on Fuzzy Systems Proceeding, 2327-2330. :2327-2330. 

[5] Chiu, S.L., 1994. Fuzzy model identification based on cluster estimation. Journal of Intelligent & Fuzzy Systems, 2:267-278. 

[6] Clements, R.P., 1984. Post-construction deformation of rockfill dams. Journal of Geotechnical Engineering, 110(7):821-840. 


[7] Cooke, J.B., 1984. Progress in rockfill dams (18th Terzaghi lecture). ASCE Journal of Geotechnical Engineering, 110(10):1383-1414. 

[8] Dascal, O., 1987. Postconstruction deformations of rockfill dams. Journal of Geotechnical Engineering, 113(1):46-59. 


[9] Dave, R.N., Krishnapuram, R., 1997. Robust clustering methods: a unified view. IEEE Transactions on Fuzzy Systems, 5:270-293. 


[10] Delmirli, K., Muthukumaran, P., 2000. Higher order fuzzy system identification using subtractive clustering. Journal of Intelligent and Fuzzy Systems, 9:129-158. 

[11] Demuth, H., Beale, M., 2001.  Neural Network Toolbox for Use with MATLAB. The MathWorks Inc,Natick, MA :840

[12] Fell, R., MacGregor, P., Stapledon, D., 2005.  Geotechnical Engineering of Dams. Taylor & Francis Group plc,London, UK :

[13] Ferreira, C., 2001. Gene expression programming: a new adaptive algorithm for solving problems. Complex System, 13(2):87-129. 

[14] Ferreira, C., 2006.  Gene Expression Programming (Mathematical Modeling by an Artificial Intelligence). Springer-Verlag,Berlin Heidelberg :55-56. 

[15] Fragos, K., Kealy, A., Gikas, V., 2010.  Dynamic Modeling for Land Mobile Navigation Using Low-cost Inertial Sensors and Least Squares Support Vector Machines Learning. ION/GNSS,Portland, OR :1687-1696. 

[16] Gikas, V., Sakellariou, M., 2008. Settlement analysis of the Mornos earth dam (Greece): Evidence from numerical modeling and geodetic monitoring. Engineering Structures, 30(11):3074-3081. 


[17] Habibagahi, G., 2002. Post-construction settlement of rockfill dams analyzed via adaptive network-based fuzzy inference systems. Computers and Geotechnics, 29(3):211-233. 


[18] Jalalifar, H., Mojedifar, S., Sahebi, A.A., Nezamabadi-pour, H., 2011. Application of the adaptive neuro-fuzzy inference system for prediction of a rock engineering classification system. Computers and Geotechnics, 38(6):783-790. 


[19] Jang, J.S.R., 1993. ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics, 23(3):665-685. 

[20] Jang, J.S.R., Sun, C.T., 1995. Neuro-fuzzy modeling and control. Proceedings IEEE, 83(3):378-406. 


[21] Jang, J.S.R., Sun, C.T., Mizutani, E., 1997. Neuro-fuzzy and Soft Computing a Computational Approach to Learning and Machine Intelligence, Prentice Hall,:640

[22] Kartalopoulos, S.V., 1996. Understanding Neural Networks and Fuzzy Logic, Basic Concepts and Applications, Wiley-IEEE, Press,:

[23] Kayadelen, C., 2011. Soil liquefaction modeling by genetic expression programming and neuro-fuzzy. Expert Systems with Applications, 38(4):4080-4087. 


[24] Kim, Y.S., Kim, B.T., 2008. Prediction of relative crest settlement of concrete-face rockfill dams analyzed using an artificial neural network model. Computer and Geotechnics, 35(3):313-322. 


[25] Koza, J., 1992.  On the Programming of Computers by Means of Natural Selection. Genetic Programming, MIT Press,Cambridge, MA :

[26] Kutzner, C., 1997. Earth and Rockfill Dams (Principles of Design and Construction), A.A.Balkema/Rotterdam/Brookfield,:

[27] Lazzari, M., Salvaneschi, P., 1994. Improved Monitoring and Surveillance through Integration of Artificial Intelligence and Information Management Systems. , Proceedings of the Tenth IEEE Conference on Artificial Intelligence for Applications, San Antonio, Texas, :

[28] Malla, S., Wieland, M., Straubhaar, R., 2007. Assessment of Long-term Deformations of Ataturk Dam. , 1st National Symposium and Exposition on Dam Safety, Ankara, Turkey, :

[29] MATLAB Users Guide, 2006. Fuzzy Logic Toolbox, The MathWorks Inc,:

[30] Mollahasani, A., Alavi, A.H., Gandomi, A.H., 2011. Empirical modeling of plate load test moduli of soil via gene expression programming. Computers and Geotechnics, 38(2):281-286. 


[31] Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H., Bolandi, H., 2012. A new predictive model for compressive strength of HPC using gene expression programming. Advances in Engineering Software, 45(1):105-114. 


[32] Ozcan, F., 2012. Gene expression programming based formulations for splitting tensile strength of concrete. Construction and Building Materials, 26(1):404-410. 

[33] Ozkuzukiran, S., Ozkan, M.Y., Ozyazicioglu, M., Yildiz, G.S., 2006. Settlement behaviour of a concrete faced rockfill dam. Geotechnical and Geological Engineering, 24(6):1665-1678. 


[34] Park, H.G., Kim, Y.S., Seo, M.W., Lim, H.D., 2005. Settlement behavior characteristics of CFRD in construction period-case of Daegok Dam. Journal of the KGS, 21(7):91-105. 

[35] Seo, M.W., Ha, I.S., Kim, Y.S., Olson, S.M., 2009. Behavior of concrete-faced rockfill dams during initial impoundment. Journal of Geotechnical and Geoenvironmental Engineering, 135:1070-1081. 

[36] Sivanandam, S.N., Deepa, S.N., 2008.  Introduction to Genetic Algorithms. Springer-Verlag,Berlin Heidelberg :

[37] Srinivasan, K., Fisher, D., 1995. Machine learning approaches to estimating software development effort. IEEE Transactions on Software Engineering, 21(2):126-137. 


[38] Teodorescu, L., Sherwood, D., 2008. High energy physics event selection with gene expression programming. Computer Physics Communications, 178(6):409-419. 


[39] Zhou, W., Hua, J., Chang, X., Zhou, C., 2011. Settlement analysis of the Shuibuya concrete-face rockfill dam. Computers and Geotechnics, 38:269-280. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE