Full Text:   <1928>

Summary:  <1650>

CLC number: O34

On-line Access: 2016-12-06

Received: 2015-05-30

Revision Accepted: 2016-05-10

Crosschecked: 2016-11-11

Cited: 0

Clicked: 3812

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.12 P.989-999

http://doi.org/10.1631/jzus.A1500159


Finite element modeling of superplastic co-doped yttria-stabilized tetragonal-zirconia polycrystals


Author(s):  Hsuan-Teh Hu, Shih-Tsung Tseng, Alice Hu

Affiliation(s):  Department of Civil Engineering, National Cheng Kung University, Tainan 701, China; more

Corresponding email(s):   hthu@mail.ncku.edu.tw

Key Words:  Finite element analysis (FEA), Y2O3-stabilized tetragonal-zirconia polycrystals (Y-TZP), Superplasticity


Hsuan-Teh Hu, Shih-Tsung Tseng, Alice Hu. Finite element modeling of superplastic co-doped yttria-stabilized tetragonal-zirconia polycrystals[J]. Journal of Zhejiang University Science A, 2016, 17(12): 989-999.

@article{title="Finite element modeling of superplastic co-doped yttria-stabilized tetragonal-zirconia polycrystals",
author="Hsuan-Teh Hu, Shih-Tsung Tseng, Alice Hu",
journal="Journal of Zhejiang University Science A",
volume="17",
number="12",
pages="989-999",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500159"
}

%0 Journal Article
%T Finite element modeling of superplastic co-doped yttria-stabilized tetragonal-zirconia polycrystals
%A Hsuan-Teh Hu
%A Shih-Tsung Tseng
%A Alice Hu
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 12
%P 989-999
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500159

TY - JOUR
T1 - Finite element modeling of superplastic co-doped yttria-stabilized tetragonal-zirconia polycrystals
A1 - Hsuan-Teh Hu
A1 - Shih-Tsung Tseng
A1 - Alice Hu
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 12
SP - 989
EP - 999
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500159


Abstract: 
Yttria-stabilized tetragonal-zirconia polycrystals (Y-TZP) have been shown to have superplastic properties at high temperatures, opening a way for the manufacture of complex pieces for industrial applications by a variety of techniques. However, before that is possible, it is important to analyze the deformation and fracture mechanisms at a macroscopic level based on continuum theory. In this paper, an elastic-plastic material model with a theoretical large deformation is constructed to simulate the true stress-true strain relationships of superplastic ceramics. The simplified constitutive law used for the numerical simulations is based on piecewise linear connections at the turning points of different deformation stages on the experimental stress-strain curves. The finite element model (FEM) is applied to selected tensile tests on 3-mol%-Y-TZP (3Y-TZP) co-doped with germanium oxide and other oxides (titanium, magnesium, and calcium) to verify its applicability. The results show that the stress-strain characteristics and the final deformed shapes in the finite element analysis (FEA) agree well with the tensile test experiments. It can be seen that the FEM presented can simulate the mechanical behavior of superplastic co-doped 3Y-TZP ceramics and that it offers a selective numerical simulation method for advanced development of superplastic ceramics.

This paper suggests a piecewise linear model to simulate the superplastic behavior of codoped Yttria-stabilized tetragonal-zirconia polycrystals. Though the 1D problem seems simple, there are certainly some difficulties needed to be overcome in the simulation.

超塑性Y-TZP基陶瓷之有限元分析

目的:通过调整非常精细的颗粒,四方晶氧化锆多晶(TZP)在室温下保持稳态四方相,并且具有优异的塑性。然而,当材料变形时,我们必须对超塑性陶瓷在机械应力分布和断裂机制方面有更多的理解。
创新点:1. 通过材料弹塑性模型;2. 使用胡克定律、塑性应变硬化及von Mises降伏准则;3. 结合等向性硬化规则及相关联的流动规则。
方法:1. 开发一个高温超塑性材料在不同应变率拉伸条件下具备不同应力-应变关系的组成律模型及有限元分析模型;2. 通过有限元法仿真模拟与实验结果比对;3. 验证所提方法的可行性和精确性。
结论:1. 有限元仿真模拟的应力-应变关系与实验数据吻合较好,对于所研究的四种组合物,最大应力和应变的误差均小于1%。2. 有限元仿真模拟的最终变形形状(宽度和厚度)与拉伸试验的结果一致;这些验证证实了所提有限元分析模型的可靠性。

关键词:有限元分析;Y-TZP基陶瓷;超塑性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abu-Farha, F.K., Khraisheh, M.K., 2007. Analysis of superplastic deformation of AZ31 magnesium alloy. Advanced Engineering Materials, 9(9):777-783.

[2]Bieler, T.R., Mishra, R.S., Mukherjee, A.K., 1996. Superplasticity in hard-to-machine materials. Annual Review of Materials Science, 26(1):75-106.

[3]Chandra, N., 1988. Analysis of superplastic metal forming by a finite element method. International Journal for Numerical Methods in Engineering, 26(9):1925-1944.

[4]Chen, W.F., Han, D.J., 2007. Plasticity for Structural Engineers. J. Ross Publishing, USA.

[5]Chen, Y., Kibble, K., Hall, R., et al., 2001. Numerical analysis of superplastic blow forming of Ti–6Al–4V alloys. Materials & Design, 22(8):679-685.

[6]Dassault Systèmes Corporation, 2014. SIMULIA Abaqus Analysis User’s Manuals, Theory Manuals and Example Problems Manuals, Version 6.14. Dassault Systèmes Corporation, France.

[7]Ding, X.D., Zbib, H.M., Hamilton, C.H., et al., 1995. On the optimization of superplastic blow-forming processes. Journal of Materials Engineering and Performance, 4(4):474-485.

[8]Domínguez-Rodríguez, A., Gómez-García, D., 2010. Superplasticity in ceramics: applications and new trends. Key Engineering Materials, 423:3-13.

[9]El-Morsy, A., Akkus, N., Manabe, K., et al., 2001. Evaluation of superplastic material characteristics using multi-dome forming test. Materials Science Forum, 357-359: 587-592.

[10]Garvie, R.C., Hannink, R.H., Pascoe, R.T., 1975. Ceramic steel. Nature, 258(5537):703-704.

[11]Giuliano, G., 2005. Simulation of instability during superplastic deformation using finite element method. Materials & Design, 26(4):373-376.

[12]Giuliano, G., 2006. Failure analysis in superplastic materials. International Journal of Machine Tools and Manufacture, 46(12-13):1604-1609.

[13]Hassan, N.M., Younan, M.Y., Salem, H.G., 2003. The finite-element deformation modeling of superplastic Al-8090. JOM, 55(10):38-42.

[14]Hsu, T.C., Chu, C.H., 1995. A finite-element analysis of sheet metal forming processes. Journal of Materials Processing Technology, 54(1-4):70-75.

[15]Hsu, T.C., Shien, I.R., 1997. Finite element modeling of sheet forming process with bending effects. Journal of Materials Processing Technology, 63(1-3):733-737.

[16]Huh, H., Han, S.S., Lee, J.S., et al., 1995. Experimental verification of superplastic sheet-metal forming analysis by the finite-element method. Journal of Materials Processing Technology, 49(3-4):355-369.

[17]Jiménez-Melendo, M., Domínguez-Rodríguez, A., 1999. Like-metal superplasticity of fine-grained Y2O3-stabilized zirconia ceramics. Philosophical Magazine A, 79(7):1591-1608.

[18]Jiménez-Melendo, M., Domínguez-Rodríguez, A., Bravo-León, A., 1998. Superplastic flow of fine-grained yttria-stabilized zirconia polycrystals: constitutive equation and deformation mechanisms. Journal of the American Ceramic Society, 81(11):2761-2776.

[19]Kim, Y.H., Hong, S.S., Lee, J.S., et al., 1996. Analysis of superplastic forming processes using a finite-element method. Journal of Materials Processing Technology, 62(1-3):90-99.

[20]Lee, C.H., Kobayash, S., 1973. New solutions to rigid-plastic deformation problems using a matrix method. Journal of Manufacturing Science and Engineering, 95(3):865-873.

[21]Li, G.Y., Tan, M.J., Liew, K.M., 2004. The finite-element deformation modeling of superplastic Al-8090. Journal of Materials Processing Technology, 150(1-2):76-83.

[22]Liew, K.M., Tan, H., Tan, M.J., 2003. Finite element modeling of superplastic sheet metal forming for cavity sensitive materials. Journal of Engineering Materials and Technology, 125(3):256-259.

[23]Lin, J., 2003. Selection of material models for predicting necking in superplastic forming. International Journal of Plasticity, 19(4):469-481.

[24]Nazzal, M.A., Khraisheh, M.K., 2008. Impact of selective grain refinement on superplastic deformation: finite element analysis. Journal of Materials Engineering and Performance, 17(2):163-167.

[25]Nazzal, M.A., Khraisheh, M.K., Darras, B.M., 2004. Finite element modeling and optimization of superplastic forming using variable strain rate approach. Journal of Materials Engineering and Performance, 13(6):691-699.

[26]Nazzal, M.A., Abu-Farha, F., Curtis, R., 2011. Finite element simulations for investigating the effects of specimen geometry in superplastic tensile tests. Journal of Materials Engineering and Performance, 20(6):865-876.

[27]Sasaki, K., Nakano, M., Mimurada, J., et al., 2001. Strain hardening in superplastic co-doped yttria-stabilized tetragonal-zirconia polycrystals. Journal of the American Ceramic Society, 84(12):2981-2986.

[28]Tao, J., Keavey, M.A., 2004. Finite element simulation for superplastic forming using a non-Newtonian viscous thick section element. Journal of Materials Processing Technology, 147(1):111-120.

[29]Wakai, F., Sakaguchi, S., Matsuno, Y., 1986. Superplasticity of yttria-stabilized tetragonal ZrO2 polycrystals. Advanced Ceramic Materials, 1(3):259-263.

[30]Wakai, F., Kondo, N., Shinoda, Y., 1999. Ceramics superplasticity. Current Opinion in Solid State and Materials Science, 4(5):461-465.

[31]Wang, N.M., Budiansky, B., 1978. Analysis of sheet metal stamping by a finite-element method. Journal of Applied Mechanics, 45(1):73-82.

[32]Yenihayat, O.F., Mimaroglu, A., Unal, H., 2005. Modelling and tracing the super plastic deformation process of 7075 aluminium alloy sheet: use of finite element technique. Materials & Design, 26(1):73-78.

[33]Zienkiewicz, O.C., Godbole, P.N., 1974. Flow of plastic and visco-plastic solids with special reference to extrusion and forming processes. International Journal for Numerical Methods in Engineering, 8(1):1-16.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE