CLC number: TH138.52
On-line Access: 2019-01-04
Received: 2018-07-21
Revision Accepted: 2018-10-11
Crosschecked: 2018-10-23
Cited: 0
Clicked: 4975
Jin-yuan Qian, Min-rui Chen, Xue-ling Liu, Zhi-jiang Jin. A numerical investigation of the flow of nanofluids through a micro Tesla valve[J]. Journal of Zhejiang University Science A, 2019, 20(1): 50-60.
@article{title="A numerical investigation of the flow of nanofluids through a micro Tesla valve",
author="Jin-yuan Qian, Min-rui Chen, Xue-ling Liu, Zhi-jiang Jin",
journal="Journal of Zhejiang University Science A",
volume="20",
number="1",
pages="50-60",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1800431"
}
%0 Journal Article
%T A numerical investigation of the flow of nanofluids through a micro Tesla valve
%A Jin-yuan Qian
%A Min-rui Chen
%A Xue-ling Liu
%A Zhi-jiang Jin
%J Journal of Zhejiang University SCIENCE A
%V 20
%N 1
%P 50-60
%@ 1673-565X
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1800431
TY - JOUR
T1 - A numerical investigation of the flow of nanofluids through a micro Tesla valve
A1 - Jin-yuan Qian
A1 - Min-rui Chen
A1 - Xue-ling Liu
A1 - Zhi-jiang Jin
J0 - Journal of Zhejiang University Science A
VL - 20
IS - 1
SP - 50
EP - 60
%@ 1673-565X
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1800431
Abstract: In this study, Al2O3-water nanofluids flowing through a micro-scale T45-R type tesla valve was investigated numerically. Both forward and reverse flows were investigated based on a verified numerical model. The effects of nanofluids flow rate, temperature, and nanoparticle volume fraction on fluid separation in the bifurcated section and the pressure drop characteristics were analyzed. It was found that most of the nanofluids flow into the straight channel of the bifurcated section when flowing forward, and into the arc channel when flowing reversely. The percentage of the main flow increases with flow rate, temperature, and nanoparticle volume fraction. Additionally, the jet flow from the arc channel leads to a larger pressure drop than forward flow. Finally, the diodicity was found most affected by flow rate, and a correlation used to predict the change in diodicity with the flow rate was proposed.
This paper presents a research work about nanofluids flow through a micro Tesla valve. Overall, it is well organized, and it is also interesting for potential readers.
[1]Abdollahi A, Mohammed HA, Vanaki SM, et al., 2017. Fluid flow and heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement. Alexandria Engineering Journal, 56(1):161-170.
[2]Amirante R, Distaso E, Tamburrano P, 2016. Sliding spool design for reducing the actuation forces in direct operated proportional directional valves: experimental validation. Energy Conversion and Management, 119:399-410.
[3]Anagnostopoulos JS, Mathioulakis DS, 2005. Numerical simulation and hydrodynamic design optimization of a Tesla-type valve for micropumps. Proceedings of the 3rd IASME/WSEAS International Conference on Fluid Dynamics & Aerodynamics, p.195-201.
[4]Anbumeenakshi C, Thansekhar MR, 2017. On the effectiveness of a nanofluid cooled microchannel heat sink under non-uniform heating condition. Applied Thermal Engineering, 113:1437-1443.
[5]Balasubramanian KR, Krishnan RA, Suresh S, 2018. Transient flow boiling performance and critical heat flux evaluation of Al2O3-water nanofluid in parallel microchannels. Journal of Nanofluids, 7(6):1035-1044.
[6]Bhuwakietkumjohn N, Parametthanuwat T, 2015. Application of silver nanoparticles contained in ethanol as a working fluid in an oscillating heat pipe with a check valve (CLOHP/CV): a thermodynamic behaviour study. Heat and Mass Transfer, 51(9):1219-1228.
[7]Buschmann MH, 2017. Nanofluid heat transfer in laminar pipe flow with twisted tape. Heat Transfer Engineering, 38(2):162-176.
[8]Chao Q, Zhang JH, Xu B, et al., 2018. Discussion on the Reynolds equation for the slipper bearing modeling in axial piston pumps. Tribology International, 118:140-147.
[9]Choi SUS, 2009. Nanofluids: from vision to reality through research. Journal of Heat transfer, 131(3):033106.
[10]de Vries SF, Florea D, Homburg FGA, et al., 2017. Design and operation of a Tesla-type valve for pulsating heat pipes. International Journal of Heat and Mass Transfer, 105: 1-11.
[11]Erdődi I, Hős C, 2017. Prediction of quarter-wave instability in direct spring operated pressure relief valves with upstream piping by means of CFD and reduced order modelling. Journal of Fluids and Structures, 73:37-52.
[12]Gómez-Villarejo R, Martín EI, Sánchez-Coronilla A, et al., 2018. Experimental characterization and theoretical modelling of Ag and Au-nanofluids: a comparative study of their thermal properties. Journal of Nanofluids, 7(6):1059-1068.
[13]Jin ZJ, Gao ZX, Zhang M, et al., 2018a. Computational fluid dynamics analysis on orifice structure inside valve core of pilot-control angle globe valve. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(13):2419-2429.
[14]Jin ZJ, Gao ZX, Chen MR, et al., 2018b. Parametric study on Tesla valve with reverse flow for hydrogen decompression. International Journal of Hydrogen Energy, 43(18):8888-8896.
[15]Jung JY, Oh HS, Kwak HY, 2009. Forced convective heat transfer of nanofluids in microchannels. International Journal of Heat and Mass Transfer, 52(1-2):466-472.
[16]Lisowski E, Filo G, Rajda J, 2018. Analysis of flow forces in the initial phase of throttle gap opening in a proportional control valve. Flow Measurement and Instrumentation, 59:157-167.
[17]Lun CKK, Savage SB, Jeffrey DJ, et al., 1984. Kinetic theories for granular flow: inelastic particles in couette flow and slightly inelastic particles in a general flowfield. Journal of Fluid Mechanics, 140:223-256.
[18]Malvandi A, Ganji DD, 2015. Effects of nanoparticle migration and asymmetric heating on magnetohydrodynamic forced convection of alumina/water nanofluid in microchannels. European Journal of Mechanics-B/Fluids, 52: 169-184.
[19]Malvandi A, Moshizi SA, Ganji DD, 2016. Two-component heterogeneous mixed convection of alumina/water nanofluid in microchannels with heat source/sink. Advanced Powder Technology, 27(1):245-254.
[20]Mirzaei M, Dehghan M, 2013. Investigation of flow and heat transfer of nanofluid in microchannel with variable property approach. Heat and Mass Transfer, 49(12):1803-1811.
[21]Mojarrad MS, Keshavarz A, Shokouhi A, 2013. Nanofluids thermal behavior analysis using a new dispersion model along with single-phase. Heat and Mass Transfer, 49(9):1333-1343.
[22]Nasrin R, Parvin S, Alim MA, et al., 2012. Transient analysis on forced convection phenomena in a fluid valve using nanofluid. Numerical Heat Transfer, Part A: Applications, 62(7):589-604.
[23]Paudel BJ, Jamal T, Thompson SM, et al., 2014. Thermal effects on micro-sized tesla valves. Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting Collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels.
[24]Qian JY, Liu BZ, Jin ZJ, et al., 2016. Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(1):54-64.
[25]Qian JY, Wei L, Zhang M, et al., 2017. Flow rate analysis of compressible superheated steam through pressure reducing valves. Energy, 135:650-658.
[26]Rostami J, Abbassi A, 2016. Conjugate heat transfer in a wavy microchannel using nanofluid by two-phase Eulerian– Lagrangian method. Advanced Powder Technology, 27(1):9-18.
[27]Shedid MH, 2015. Hydrodynamic characteristics of a butterfly valve controlling Al2O3/water nanofluid flow. International Journal of Fluid Mechanics Research, 42(3):227-235.
[28]Syamlal M, Rogers W, O’Brien TJ, 1993. MFIX Documentation Theory Guide. DOE/METC-94/1004, USDOE Morgantown Energy Technology Center, Washington.
[29]Thompson SM, Ma HB, Wilson C, 2011. Investigation of a flat-plate oscillating heat pipe with Tesla-type check valves. Experimental Thermal and Fluid Science, 35(7):1265-1273.
[30]Thompson SM, Paudel BJ, Jamal T, et al., 2014. Numerical investigation of multistaged Tesla valves. Journal of Fluids Engineering, 136(8):081102.
[31]Topuz A, Engin T, Özalp AA, et al., 2018. Experimental investigation of optimum thermal performance and pressure drop of water-based Al2O3, TiO2 and ZnO nanofluids flowing inside a circular microchannel. Journal of Thermal Analysis and Calorimetry, 131(3):2843-2863.
[32]Truong TQ, Nguyen NT, 2003. Simulation and optimization of tesla valves. Nanotech, 1:178-181.
[33]Wang CT, Chen YM, Hong PA, et al., 2014. Tesla valves in micromixers. International Journal of Chemical Reactor Engineering, 12(1):397-403.
[34]Wannapakhe S, Rittidech S, Bubphachot B, et al., 2009. Heat transfer rate of a closed-loop oscillating heat pipe with check valves using silver nanofluid as working fluid. Journal of Mechanical Science and Technology, 23(6):1576-1582.
[35]Yoo D, Lee J, Lee B, et al., 2018. Further elucidation of nanofluid thermal conductivity measurement using a transient hot-wire method apparatus. Heat and Mass Transfer, 54(2):415-424.
[36]Zhang JH, Chao Q, Xu B, 2018a. Analysis of the cylinder block tilting inertia moment and its effect on the performance of high-speed electro-hydrostatic actuator pumps of aircraft. Chinese Journal of Aeronautics, 31(1):169-177.
[37]Zhang JH, Wang D, Xu B, et al., 2018b. Experimental and numerical investigation of flow forces in a seat valve using a damping sleeve with orifices. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(6):417-430.
Open peer comments: Debate/Discuss/Question/Opinion
<1>