Full Text:   <2414>

Summary:  <1781>

CLC number: TQ31

On-line Access: 2019-06-04

Received: 2019-05-14

Revision Accepted: 2019-07-29

Crosschecked: 2019-08-06

Cited: 0

Clicked: 4354

Citations:  Bibtex RefMan EndNote GB/T7714


Gui-jun Xian


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2019 Vol.20 No.9 P.660-674


Grafting of nano-silica onto ramie fiber for enhanced mechanical and interfacial properties of ramie/epoxy composite

Author(s):  Anna Dilfi K. F., Zi-jin Che, Gui-jun Xian

Affiliation(s):  Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China; more

Corresponding email(s):   gjxian@hit.edu.cn

Key Words:  Nano-silica, Sodium dodecyl sulfate (SDS), Silane coupling agent, Ramie fiber, Mechanical properties, Interfacial properties

Anna Dilfi K. F. , Zi-jin Che, Gui-jun Xian. Grafting of nano-silica onto ramie fiber for enhanced mechanical and interfacial properties of ramie/epoxy composite[J]. Journal of Zhejiang University Science A, 2019, 20(9): 660-674.

@article{title="Grafting of nano-silica onto ramie fiber for enhanced mechanical and interfacial properties of ramie/epoxy composite",
author="Anna Dilfi K. F. , Zi-jin Che, Gui-jun Xian",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Grafting of nano-silica onto ramie fiber for enhanced mechanical and interfacial properties of ramie/epoxy composite
%A Anna Dilfi K. F.
%A Zi-jin Che
%A Gui-jun Xian
%J Journal of Zhejiang University SCIENCE A
%V 20
%N 9
%P 660-674
%@ 1673-565X
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1900186

T1 - Grafting of nano-silica onto ramie fiber for enhanced mechanical and interfacial properties of ramie/epoxy composite
A1 - Anna Dilfi K. F.
A1 - Zi-jin Che
A1 - Gui-jun Xian
J0 - Journal of Zhejiang University Science A
VL - 20
IS - 9
SP - 660
EP - 674
%@ 1673-565X
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1900186

To enhance the bonding properties between ramie fiber and epoxy resin, the ramie fiber was modified using nano-silica grafting. Hydrophilic nano-silica treated with water-soluble sodium dodecyl sulfate (SDS) and organic silane coupling agents was grafted onto the surface of ramie fiber. The surface roughness of the fibers was considerably increased after grafting. The nano-silica particles on the fiber surface enhanced the mechanical and thermal properties of the fiber-epoxy composite plates. Based on an analysis of contact angle measurements and a water absorption study, it was determined that the hydrophilicity of the treated fiber was weakened.

The authors present an interesting approach to improve properties of natural fiber composites by incorporating nanosilica on the fiber surface. They present a method to weaken the hydrophilicity of the nanosilica grafted fiber. The paper is very interesting, with enough novel data and well written.



关键词:纳米二氧化硅; 十二烷基硫酸; 硅烷偶联剂; 苎麻纤维; 力学性能; 界面性能

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Abbasian M, Massoumi B, Mohammad-Rezaei R, et al., 2019. A novel epoxy-based resin nanocomposite: co-curing of epoxidized novolac and epoxidized poly(vinyl chloride) using amine-functionalized silica nanoparticles. Materials Research Express, 6:085346.

[2]Aissaoui N, Bergaoui L, Landoulsi J, et al., 2012. Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption. Langmuir, 28(1):656-665.

[3]Al-Oweini R, El-Rassy H, 2009. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R″Si(OR′)3 precursors. Journal of Molecular Structure, 919(1-3):140-145.

[4]ASTM, 2003. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM D790. American Society for Testing and Materials, West Conshohocken, USA.

[5]ASTM, 2016. Standard Test Method for Short-beam Strength of Polymer Matrix Composite Materials and Their Laminates, ASTM D2344. American Society for Testing and Materials, West Conshohocken, USA.

[6]ASTM, 2017. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM D3039M. American Society for Testing and Materials, West Conshohocken, USA.

[7]ASTM, 2018. Standard Test Method for Water Absorption of Plastics, ASTM D570. American Society for Testing and Materials, West Conshohocken, USA.

[8]Chen DK, Li J, Ren J, 2011. Influence of fiber surface-treatment on interfacial property of poly(L-lactic acid)/ ramie fabric biocomposites under UV-irradiation hydrothermal aging. Materials Chemistry and Physics, 126(3):524-531.

[9]Dilfi KF A, Balan A, Bin H, et al., 2018. Effect of surface modification of jute fiber on the mechanical properties and durability of jute fiber-reinforced epoxy composites. Polymer Composites, 39(S4):E2519-E2528.

[10]Dilfi KF A, Che ZJ, Xian GJ, 2019. Grafting ramie fiber with carbon nanotube and its effect on the mechanical and interfacial properties of ramie/epoxy composites. Journal of Natural Fibers, 16(3):388-403.

[11]Fan ZH, Santare MH, Advani SG, 2008. Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 39(3):540-554.

[12]Feng YL, Hu YX, Zhao GY, et al., 2011. Preparation and mechanical properties of high-performance short ramie fiber-reinforced polypropylene composites. Journal of Applied Polymer Science, 122(3):1564-1571.

[13]Fogarty JC, Aktulga HM, Grama AY, et al., 2010. A reactive molecular dynamics simulation of the silica-water interface. Journal of Chemical Physics, 132(17):174704.

[14]Gao X, Jensen RE, McKnight SH, et al., 2011. Effect of colloidal silica on the strength and energy absorption of glass fiber/epoxy interphases. Composites Part A: Applied Science and Manufacturing, 42(11):1738-1747.

[15]Gu YZ, Tan XL, Yang ZJ, et al., 2014. Hot compaction and mechanical properties of ramie fabric/epoxy composite fabricated using vacuum assisted resin infusion molding. Materials & Design, 56:852-861.

[16]Hansen D, Bomholt N, Jeppesen JC, et al., 2017. Contact angle goniometry on single micron-scale fibers for composites. Applied Surface Science, 392:181-188.

[17]Hsieh CT, Wu FL, Yang SY, 2008. Superhydrophobicity from composite nano/microstructures: carbon fabrics coated with silica nanoparticles. Surface and Coatings Technology, 202(24):6103-6108.

[18]Jia XL, Li G, Liu BY, et al., 2013. Multiscale reinforcement and interfacial strengthening on epoxy-based composites by silica nanoparticle-multiwalled carbon nanotube complex. Composites Part A: Applied Science and Manufacturing, 48:101-109.

[19]John MJ, Thomas S, 2008. Biofibres and biocomposites. Carbohydrate Polymers, 71(3):343-364.

[20]Kang S, Hong SI, Choe CR, et al., 2001. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol–gel process. Polymer, 42(3):879-887.

[21]Khung YL, Ngalim SH, Meda L, et al., 2014. Preferential formation of Si–O–C over Si–C linkage upon thermal grafting on hydrogen-terminated silicon (111). Chemistry: A European Journal, 20(46):15151-15158.

[22]Kuzmin KL, Timoshkin IA, Gutnikov SI, et al., 2017. Effect of silane/nano-silica on the mechanical properties of basalt fiber reinforced epoxy composites. Composite Interfaces, 24(1):13-34.

[23]Li N, Hu P, Zhang XH, et al., 2013a. Effects of oxygen partial pressure and atomic oxygen on the microstructure of oxide scale of ZrB2–SiC composites at 1500 °C. Corrosion Science, 73:44-53.

[24]Li Y, Han BY, Liu L, et al., 2013b. Surface modification of silica by two-step method and properties of solution styrene butadiene rubber (SSBR) nanocomposites filled with modified silica. Composites Science and Technology, 88:69-75.

[25]Linec M, Music B, 2019. The effects of silica-based fillers on the properties of epoxy molding compounds. Materials, 12(11):1801-1811.

[26]Liu ZN, Xu KL, Sun H, et al., 2015. One-step synthesis of single-layer MnO2 nanosheets with multi-role sodium dodecyl sulfate for high-performance pseudocapacitors. Small, 11(18):2182-2191.

[27]Saba N, Jawaid M, Alothman OY, et al., 2016. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction and Building Materials, 106:149-159.

[28]Shah DU, 2013. Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. Journal of Materials Science, 48(18):6083-6107.

[29]Shih YF, Huang CC, Chen PW, 2010. Biodegradable green composites reinforced by the fiber recycling from disposable chopsticks. Materials Science and Engineering: A, 527(6):1516-1521.

[30]Siddiqui NA, Li EL, Sham ML, et al., 2010. Tensile strength of glass fibres with carbon nanotube–epoxy nanocomposite coating: effects of CNT morphology and dispersion state. Composites Part A: Applied Science and Manufacturing, 41(4):539-548.

[31]Songolzadeh R, Moghadasi J, 2017. Stabilizing silica nanoparticles in high saline water by using ionic surfactants for wettability alteration application. Colloid and Polymer Science, 295(1):145-155.

[32]Sreekumar PA, Thomas SP, Saiter JM, et al., 2009. Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Composites Part A: Applied Science and Manufacturing, 40(11):1777-1784.

[33]Tserki V, Matzinos P, Zafeiropoulos NE, et al., 2006. Development of biodegradable composites with treated and compatibilized lignocellulosic fibers. Journal of Applied Polymer Science, 100(6):4703-4710.

[34]Varga C, Miskolczi N, Bartha L, et al., 2010. Improving the mechanical properties of glass-fibre-reinforced polyester composites by modification of fibre surface. Materials & Design, 31(1):185-193.

[35]Vashisth A, Bakis CE, 2019. Multiscale characterization and modeling of nanosilica-reinforced filament wound carbon/epoxy composite. Materials Performance and Characterization, 8(1):1-21.

[36]Wang HG, Xian GJ, Li H, 2015. Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite. Composites Part A: Applied Science and Manufacturing, 76:172-180.

[37]Wang ZW, Wang TJ, Wang ZW, et al., 2006. The adsorption and reaction of a titanate coupling reagent on the surfaces of different nanoparticles in supercritical CO2. Journal of Colloid and Interface Science, 304(1):152-159.

[38]Warrier A, Godara A, Rochez O, et al., 2010. The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Composites Part A: Applied Science and Manufacturing, 41(4):532-538.

[39]Wei B, Song SH, Cao HL, 2011. Strengthening of basalt fibers with nano-SiO2–epoxy composite coating. Materials & Design, 32(8-9):4180-4186.

[40]Yeon J, van Duin ACT, 2016. Reaxff molecular dynamics simulations of hydroxylation kinetics for amorphous and nano-silica structure, and its relations with atomic strain energy. The Journal of Physical Chemistry C, 120(1):305-317.

[41]Yu T, Ren J, Li SM, et al., 2010. Effect of fiber surface-treatments on the properties of poly(lactic acid)/ ramie composites. Composites Part A: Applied Science and Manufacturing, 41(4):499-505.

[42]Zeng Y, Liu HY, Mai YW, et al., 2012. Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles. Composites Part B: Engineering, 43(1):90-94.

[43]Zhang HB, Zheng WG, Yan Q, et al., 2010. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer, 51(5):1191-1196.

[44]Zhu ZH, Imada T, Asakura T, 2009. Preparation and characterization of regenerated fiber from the aqueous solution of Bombyx mori cocoon silk fibroin. Materials Chemistry and Physics, 117(2-3):430-433.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE