Full Text:   <4193>

CLC number: Q946

On-line Access: 2012-06-29

Received: 2012-08-03

Revision Accepted: 2012-09-10

Crosschecked: 2012-09-11

Cited: 11

Clicked: 6376

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2012 Vol.13 No.10 P.811-823

http://doi.org/10.1631/jzus.B1200130


Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus


Author(s):  Yu-ping Jiang, Fei Cheng, Yan-hong Zhou, Xiao-jian Xia, Wei-hua Mao, Kai Shi, Zhi-xiang Chen, Jing-quan Yu

Affiliation(s):  Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   jqyu@zju.edu.cn

Key Words:  Metabolism, Photosynthesis, Reactive oxygen species, Rubisco, Sucrose


Yu-ping Jiang, Fei Cheng, Yan-hong Zhou, Xiao-jian Xia, Wei-hua Mao, Kai Shi, Zhi-xiang Chen, Jing-quan Yu. Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus[J]. Journal of Zhejiang University Science B, 2012, 13(10): 811-823.

@article{title="Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus",
author="Yu-ping Jiang, Fei Cheng, Yan-hong Zhou, Xiao-jian Xia, Wei-hua Mao, Kai Shi, Zhi-xiang Chen, Jing-quan Yu",
journal="Journal of Zhejiang University Science B",
volume="13",
number="10",
pages="811-823",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1200130"
}

%0 Journal Article
%T Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus
%A Yu-ping Jiang
%A Fei Cheng
%A Yan-hong Zhou
%A Xiao-jian Xia
%A Wei-hua Mao
%A Kai Shi
%A Zhi-xiang Chen
%A Jing-quan Yu
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 10
%P 811-823
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1200130

TY - JOUR
T1 - Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus
A1 - Yu-ping Jiang
A1 - Fei Cheng
A1 - Yan-hong Zhou
A1 - Xiao-jian Xia
A1 - Wei-hua Mao
A1 - Kai Shi
A1 - Zhi-xiang Chen
A1 - Jing-quan Yu
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 10
SP - 811
EP - 823
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1200130


Abstract: 
Brassinosteroids (BRs) are potent regulators of photosynthesis and crop yield in agricultural crops; however, the mechanism by which BRs increase photosynthesis is not fully understood. Here, we show that foliar application of 24-epibrassinolide (EBR) resulted in increases in CO2 assimilation, hydrogen peroxide (H2O2) accumulation, and leaf area in cucumber. H2O2 treatment induced increases in CO2 assimilation whilst inhibition of the H2O2 accumulation by its generation inhibitor or scavenger completely abolished EBR-induced CO2 assimilation. Increases of light harvesting due to larger leaf areas in EBR- and H2O2-treated plants were accompanied by increases in the photochemical efficiency of photosystem II (ΦPSII) and photochemical quenching coefficient (qP). EBR and H2O2 both activated carboxylation efficiency of ribulose-1,5-bisphosphate oxygenase/carboxylase (rubisco) from analysis of CO2 response curve and in vitro measurement of rubisco activities. Moreover, EBR and H2O2 increased contents of total soluble sugar, sucrose, hexose, and starch, followed by enhanced activities of sugar metabolism such as sucrose phosphate synthase, sucrose synthase, and invertase. Interestingly, expression of transcripts of enzymes involved in starch and sugar utilization were inhibited by EBR and H2O2. However, the effects of EBR on carbohydrate metabolisms were reversed by the H2O2 generation inhibitor diphenyleneodonium (DPI) or scavenger dimethylthiourea (DMTU) pretreatment. All of these results indicate that H2O2 functions as a secondary messenger for EBR-induced CO2 assimilation and carbohydrate metabolism in cucumber plants. Our study confirms that H2O2 mediates the regulation of photosynthesis by BRs and suggests that EBR and H2O2 regulate Calvin cycle and sugar metabolism via redox signaling and thus increase the photosynthetic potential and yield of crops.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Allen, D.J., Ort, D.R., 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci., 6(1):36-42.

[2]Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris. Plant Physiol., 24(1):1-15.

[3]Asami, T., Nakano, T., Nakashita, H., Sekimata, K., Shimada, Y., Yoshida, S., 2003. The influence of chemical genetics on plant science: shedding light on functions and mechanism of action of brassinosteroids using biosynthesis inhibitors. J. Plant Growth Regul., 22(4):336-349.

[4]Balmer, Y., Koller, A., del Val, G., Manieri, W., Schurmann, P., Buchanan, B.B., 2003. Proteomics gives insight into the regulatory function of chloroplast thioredoxins. PNAS, 100(1):370-375.

[5]Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72(1-2):248-254.

[6]Buchanan, B.B., Schurmann, P., Wolosiuk, R.A., Jacquot, J.P., 2002. The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynth. Res., 73(1-3):215-222.

[7]Buysse, J., Merckx, R., 1993. An improved colorimetric method to quantify sugar content of plant tissue. J. Exp. Bot., 44(10):1627-1629.

[8]Choe, S., Fujioka, S., Noguchi, T., Takatsuto, S., Yoshida, S., Feldmann, K.A., 2001. Over-expression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J., 26(6):573-582.

[9]Clouse, S.D., 2011. Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell, 23(4):1219-1230.

[10]Desikan, R., Cheung, M.K., Bright, J., Henson, D., Hancock, J.T., Neill, S.J., 2004. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J. Exp. Bot., 55(395):205-212.

[11]Dietz, K.J., 2008. Redox signal integration: from stimulus to networks and genes. Physiol. Plant., 133(3):459-468.

[12]Endo, M., Nakagawa, H., Ogura, N., Sato, T., 1990. Size and levels of mRNA for acid invertase in ripe tomato fruits. Plant Cell Physiol., 31(5):655-659.

[13]Ethier, G.J., Livingston, N.J., 2004. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ., 27(2):137-153.

[14]Farquhar, G.D., Sharkey, T.D., 1982. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol., 33:317-345.

[15]Fox, R.B., 1984. Prevention of granulocyte-mediated oxidant lung in rats by a hydroxyl radical scavenger, dimethylthiourea. J. Clin. Invest., 74(4):1456-1464.

[16]Foyer, C.H., Lopez-Delgado, H., Dat, J.F., Scott, I.M., 1997. Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Physiol. Plant., 100(2):241-254.

[17]Fryer, M.J., Oxborough, K., Martin, B., Ort, D.R., Baker, N.R., 1995. Factors associated with depression of photosynthetic quantum efficiency in maize at low growth temperature. Plant Physiol., 108(2):761-767.

[18]Furbank, R.T., Taylor, W.C., 1995. Regulation of photosynthesis in C-3 and C-4 plants: a molecular approach. Plant Cell, 7(7):797-807.

[19]Galtier, N., Foyer, C.H., Murchie, E., Alred, R., Quick, P., Voelker, T.A., Thepenier, C., Lasceve, G., Betsche, T., 1995. Effects of light and atmospheric carbon-dioxide enrichment on photosynthesis and carbon partitioning in the leaves of tomato (Lycopersicon esculentum L.) plants over-expressing sucrose-phosphate synthase. J. Exp. Bot., 46(SI):1335-1344.

[20]Genty, B., Briatais, J.M., Baker, N.R., 1989. The relationships between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta, 990(1):87-92.

[21]Hancock, J.T., Jones, O.T.G., 1987. The inhibition by diphenyleneiodonium and its analogs of superoxide generation by macrophages. Biochem. J., 242(1):103-107.

[22]Hendriks, J.H.M., Kolbe, A., Gibon, Y., Stitt, M., Geigenberger, P., 2003. ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol., 133(2):838-849.

[23]Hubbard, N.L., Huber, S.C., Pharr, D.M., 1989. Sucrose phosphate synthase and acid invertase as determinants of sucrose accumulation in developing muskmelon (Cucumis melo L.) fruits. Plant Physiol., 91(4):1527-1534.

[24]Ito, H., Iwabuchi, M., Ogawa, K., 2003. The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione. Plant Cell Physiol., 44(7):655-660.

[25]Jiang, Y.P., Cheng, F., Zhou, Y.H., Xia, X.J., Mao, W.H., Shi, K., Chen Z., Yu, J.Q., 2012. Cellular glutathione redox homeostasis plays an important role in the brassinosteroid-induced increase in CO2 assimilation in Cucumis sativus. New Phytol., 194(4):932-943.

[26]Kamata, H., Hirata, H., 1999. Redox regulation of cellular signaling. Cell. Signal., 11(1):1-14.

[27]Khripach, V., Zhabinskii, V., de Groot, A., 2000. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann. Bot., 86(3):441-447.

[28]Kwak, J.M., Mori, I.C., Pei, Z.M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Bodde, S., Jones, J.D., Schroeder, J.I., 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J., 22(11):2623-2633.

[29]Kwak, J.M., Nguyen, V., Schroeder, J.I., 2006. The role of reactive oxygen species in hormonal responses. Plant Physiol., 141(2):323-329.

[30]Kwezi, L., Meier, S., Mungur, L., Ruzvidzo, O., Irving, H., Gehring, C., 2007. The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase in vitro. PLoS One, 2(5):e449.

[31]Laloi, C., Apel, K., Danon, A., 2004. Reactive oxygen signalling: the latest news. Curr. Opin. Plant Biol., 7(3):323-328.

[32]Lefebvre, S., Lawson, T., Zakhleniuk, O.V., Lloyd, J.C., Raines, C.A., 2005. Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol., 138(1):451-460.

[33]Lemaire, S.D., Guillon, B., le Marechal, P., Keryer, E., Miginia-Maslow, M., Decottignies, P., 2004. New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. PNAS, 101(19):7475-7480.

[34]Lilley, R.M., Walker, D.A., 1974. An improved spectrophotometric assay for ribulose-bisphosphate carboxylase. Biochim. Biophys. Acta, 358(1):226-229.

[35]Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods, 25(4):402-408.

[36]Long, S.P., Zhu, X.G., Naidu, S.L., Ort, D.R., 2006. Can improvement in photosynthesis increase crop yields? Plant Cell Environ., 29(3):315-330.

[37]Lowell, C.A., Tomlinson, P.T., Koch, K.E., 1989. Sucrose-metabolising enzymes in transport tissue and adjacent sink structures in developing citrus fruit. Plant Physiol., 90(4):1394-1402.

[38]Marino, D., Hohnjec, N., Kuster, H., Moran, J.F., Gonzalez, E.M., Arrese-Igor, C., 2008. Evidence for transcriptional and post-translational regulation of sucrose synthase in pea nodules by the cellular redox state. Mol. Plant-Microbe Interact., 21(5):622-630.

[39]Meyer, A.J., Hell, R., 2005. Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth. Res., 86(3):435-457.

[40]Miron, D., Schaffer, A.A., 1991. Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of Lycopersicon esculentum Mill. and the sucrose accumulating Lycopersicon hirsutum Humb. and Bonpl. Plant Physiol., 95(2):623-627.

[41]Miyagawa, Y., Tamoi, M., Shigeoka, S., 2001. Over-expression of a cyanobacterial fructose-1,6-/ sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat. Biotechnol., 19(10):965-969.

[42]Neill, S., Desikan, R., Hancock, J., 2002. Hydrogen peroxide signalling. Curr. Opin. Plant Biol., 5(5):388-395.

[43]Nogues, S., Baker, N.R., 2000. Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. J. Exp. Bot., 51(348):1309-1317.

[44]Ogweno, J.O., Song, X.S., Shi, K., Hu, W.H., Mao, W.H., Zhou, Y.H., Yu, J.Q., Nogues, S., 2008. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J. Plant Growth Regul., 27(1):49-57.

[45]Ozaki, K., Uchida, A., Takabe, T., Shinagawa, F., Tanaka, Y., Takabe, T., Hayashi, T., Hattori, T., Rai, A.K., Takabe, T., 2009. Enrichment of sugar content in melon fruits by hydrogen peroxide treatment. J. Plant Physiol., 166(6):569-578.

[46]Parry, M.A.J., Andralojc, P.J., Mitchell, R.A.C., Madgwick, P.J., Keys, A.J., 2003. Manipulation of Rubisco: the amount, activity, function and regulation. J. Exp. Bot., 54(386):1321-1333.

[47]Paul, M.J., Driscoll, S.P., Lawlor, D.W., 1992. Sink-regulation of photosynthesis in relation to temperature in sunflower and rape. J. Exp. Bot., 43(2):147-153.

[48]Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, 2009. World Population Prospects: The 2008 Revision. Available from http://www.un.org/esa/population/publications/popnews/Newsltr_87.pdf.

[49]Queval, G., Thominet, D., Vanacker, H., Miginiac-Maslow, M., Gakiere, B., Noctor, G., 2009. H2O2-activated up-regulation of glutathione in Arabidopsis involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast. Mol. Plant, 2(2):344-356.

[50]Roitsch, T., Gonzalez, M.C., 2004. Function and regulation of plant invertases: sweet sensations. Trends Plant Sci., 9(12):606-613.

[51]Rouhier, N., Lemaire, S.D., Jacquot, J.P., 2008. The role of glutathione in photosynthetic organisms: Emerging functions for glutaredoxins and glutathionylation. Annu. Rev. Plant Biol., 59:143-166.

[52]Ruelland, E., Miginiac-Maslow, M., 1999. Regulation of chloroplast enzyme activities by thioredoxins: activation or relief from inhibition? Trends Plant Sci., 4(4):136-141.

[53]Schluter, U., Kopke, D., Altmann, T., Mussig, C., 2002. Analysis of carbohydrate metabolism of CPD antisense plants and the brassinosteroid-deficient cbb1 mutant. Plant Cell Environ., 25(6):783-791.

[54]Schüermann, P., Buchanan, B.B., 2008. The ferredoxin/ thioredoxin system of oxygenic photosynthesis. Antioxid. Redox Signal., 10(7):1235-1273.

[55]Sharkey, T.D., Savitch, L.V., Butz, N.D., 1991. Photometric method for routine determination of kcat and carbamylation of Rubisco. Photosynth. Res., 28(1):41-48.

[56]Sinclair, T.R., Purcell, L.C., Sneller, C.H., 2004. Crop transformation and the challenge to increase yield potential. Trends Plant Sci., 9(2):70-75.

[57]Sonnewald, U., Lerchl, J., Zrenner, R., Frommer, W., 1994. Manipulation of sink-source relations in transgenic plants. Plant Cell Environ., 17(5):649-658.

[58]Stitt, M., 1986. Limitation of photosynthsis by carbon metabolism. I. Evidence fro excess electron-transport capacity in leaves carrying out photosynthsis in saturating light and CO2. Plant Physiol., 81(4):1115-1122.

[59]Sun, Y., Fan, X.Y., Cao, D.M., Tang, W.Q., He, K., Zhu, J.Y., He, J.X., Bai, M.Y., Zhu, S.W., Oh, E., et al., 2010. In tegration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev. Cell, 19(5):765-777.

[60]van Kooten, O., Snel, J., 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res., 25(3):147-150.

[61]von Caemmerer, S., Farquhar, G.D., 1981. Some relationships between the biochemistry of photosynthesis and the gas-exchange of leaves. Planta, 153(4):376-387.

[62]Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., van Montagu, M., Inze, D., van Camp, W., 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C-3 plants. EMBO J., 16(16):4806-4816.

[63]Wu, C.Y., Trieu, A., Radhakrishnan, P., Kwok, S.F., Harris, S., Zhang, K., Wang, J.L., Wan, J.M., Zhai, H.Q., Takatsuto, S., et al., 2008. Brassinosteroids regulate grain filling in rice. Plant Cell, 20(8):2130-2145.

[64]Xia, X.J., Huang, L.F., Zhou, Y.H., Mao, W.H., Shi, K., Wu, J.X., Asami, T., Chen, Z.X., Yu, J.Q., 2009a. Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 230(6):1185-1196.

[65]Xia, X.J., Wang, Y.J., Zhou, Y.H., Tao, Y., Mao, W.H., Shi, K., Asami, T., Chen, Z, Yu, J.Q., 2009b. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol., 150(2):801-814.

[66]Yu, J.Q., Matsui, Y., 1997. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. J. Chem. Ecol., 23(3):817-827.

[67]Yu, J.Q., Huang, L.F., Hu, W.H., Zhou, Y.H., Mao, W.H., Ye, S.F., Nogues, S., 2004. A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J. Exp. Bot., 55(399):1135-1143.

[68]Zhang, X., Zhang, L., Dong, F.C., Gao, J.F., Galbraith, D.W., Song, C.P., 2001. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol., 126(4):1438-1448.

[69]Zhou, Y.H., Yu, J.Q., Huang, L.F., Nogues, S., 2004. The relationship between CO2 assimilation, photosynthetic electron transport and water-water cycle in chill-exposed cucumber leaves under low light and subsequent recovery. Plant Cell Environ., 27(12):1503-1514.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE