Full Text:   <3200>

Summary:  <1854>

CLC number: Q945

On-line Access: 2014-04-06

Received: 2013-10-13

Revision Accepted: 2014-02-17

Crosschecked: 2014-03-13

Cited: 7

Clicked: 5766

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.4 P.365-374


Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management*

Author(s):  Yu-yan Wang1, Yan-yan Wei2, Lan-xue Dong1, Ling-li Lu1, Ying Feng1, Jie Zhang1, Feng-shan Pan1, Xiao-e Yang1

Affiliation(s):  1. Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   xyang571@yahoo.com

Key Words:  Rice, Alternate wetting and drying, Soil fertilization, Zinc

Yu-yan Wang, Yan-yan Wei, Lan-xue Dong, Ling-li Lu, Ying Feng, Jie Zhang, Feng-shan Pan, Xiao-e Yang. Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management[J]. Journal of Zhejiang University Science B, 2014, 15(4): 365-374.

@article{title="Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management",
author="Yu-yan Wang, Yan-yan Wei, Lan-xue Dong, Ling-li Lu, Ying Feng, Jie Zhang, Feng-shan Pan, Xiao-e Yang",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management
%A Yu-yan Wang
%A Yan-yan Wei
%A Lan-xue Dong
%A Ling-li Lu
%A Ying Feng
%A Jie Zhang
%A Feng-shan Pan
%A Xiao-e Yang
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 4
%P 365-374
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300263

T1 - Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management
A1 - Yu-yan Wang
A1 - Yan-yan Wei
A1 - Lan-xue Dong
A1 - Ling-li Lu
A1 - Ying Feng
A1 - Jie Zhang
A1 - Feng-shan Pan
A1 - Xiao-e Yang
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 4
SP - 365
EP - 374
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300263

zinc (Zn) deficiency and water scarcity are major challenges in rice (Oryza sativa L.) under an intensive rice production system. This study aims to investigate the impact of water-saving management and different Zn fertilization source (ZnSO4 and Zn-EDTA) regimes on grain yield and Zn accumulation in rice grain. Different water managements, continuous flooding (CF), and alternate wetting and drying (AWD) were applied during the rice growing season. Compared with CF, the AWD regime significantly increased grain yield and Zn concentrations in both brown rice and polished rice. Grain yield of genotypes (Nipponbare and Jiaxing27), on the average, was increased by 11.4%, and grain Zn concentration by 3.9% when compared with those under a CF regime. Zn fertilization significantly increased Zn density in polished rice, with a more pronounced effect of ZnSO4 being observed as compared with Zn-EDTA, especially under an AWD regime. Decreased phytic acid content and molar ratio of phytic acid to Zn were also noted in rice grains with Zn fertilization. The above results demonstrated that water management of AWD combined with ZnSO4 fertilization was an effective agricultural practice to elevate grain yield and increase Zn accumulation and bioavailability in rice grains.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Alloway, B.J., 2009. Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health, 31(5):537-548. 

[2] Belder, P., Bouman, B.A.M., Cabangon, R., 2004. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric Water Manage, 65(3):193-210. 

[3] Bouman, B.A.M., Hengsdijk, H., Hardy, B., 2002.  Water-Wise Rice Production. International Rice Research Institute,Los Baños, Philippines :89-102. 

[4] Bouman, B.A.M., Lampayan, R.M., Tuong, T.P., 2007.  Water Management in Irrigated Rice: Coping with Water Scarcity. International Rice Research Institute,Los Baños, Philippines :17-32. 

[5] Cakmak, I., 2008. Enrichment of cereal grains with zinc: agronomic or genetic biofortification?. Plant Soil, 302(1-2):1-17. 

[6] Cakmak, I., 2008. Zinc deficiency in wheat in Turkey. Micronutrient Deficiencies in Global Crop Production, Springer Netherlands,:181-200. 

[7] Chapagain, T., Yamaji, E., 2010. The effects of irrigation method, age of seedling and spacing on crop performance, productivity and water-wise rice production in Japan. Paddy Water Environ, 8(1):81-90. 

[8] Chasapis, C.T., Loutsidou, A.C., Spiliopoulou, C.A., 2012. Zinc and human health: an update. Arch Toxicol, 86(4):521-534. 

[9] Fitzgerald, M.A., Mccouch, S.R., Hall, R.D., 2009. Not just a grain of rice: the quest for quality. Trends Plant Sci, 14(3):133-139. 

[10] Gao, X., Zou, C., Fan, X., 2006. From flooded to aerobic conditions in rice cultivation: consequences for zinc uptake. Plant Soil, 280(1-2):41-47. 

[11] Gao, X., Hoffland, E., Stomph, T., 2011. Improving zinc bioavailability in transition from flooded to aerobic rice. A review. Agron Sustain Dev, 32(2):465-478. 

[12] Giordano, P.M., 1977. Efficiency of zinc fertilization for flooded rice. Plant Soil, 48(3):673-684. 

[13] Hurrell, R.F., 2003. Influence of vegetable protein sources on trace element and mineral bioavailability. J Nutr, 133(9):2973S-2977S. 

[14] Hussain, S., Maqsood, M.A., Rengel, Z., 2012. Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application. Plant Soil, 361(1-2):279-290. 

[15] Impa, S.M., Johnson-Beebout, S.E., 2012. Mitigating zinc deficiency and achieving high grain Zn in rice through integration of soil chemistry and plant physiology research. Plant Soil, 361(1-2):3-41. 

[16] Kang, B.T., Okoro, E.G., 1976. Response of flooded rice grown on a vertisol from northern Nigeria to zinc sources and methods of application. Plant Soil, 44(1):15-25. 

[17] Kgel-Knabner, I., Amelung, W., Cao, Z., 2010. Biogeochemistry of paddy soils. Geoderma, 157(1-2):1-14. 

[18] Li, Y.H., Barker, R., 2004. Increasing water productivity for paddy irrigation in China. Paddy Water Environ, 2(4):187-193. 

[19] Lindsay, W.L., Norvell, W.A., 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J, 42(3):421-428. 

[20] Lonergan, P.F., Pallotta, M.A., Lorimer, M., 2009. Multiple genetic loci for zinc uptake and distribution in barley (Hordeum vulgare). New Phytol, 184(1):168-179. 

[21] Ning, H., Liu, Z., Wang, Q., 2009. Effect of nitrogen fertilizer application on grain phytic acid and protein concentrations in japonica rice and its variations with genotypes. J Cereal Sci, 50(1):49-55. 

[22] Phattarakul, N., Rerkasem, B., Li, L.J., 2012. Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil, 361(1-2):131-141. 

[23] Rehman, H.U., Aziz, T., Farooq, M., 2012. Zinc nutrition in rice production systems: a review. Plant Soil, 361(1-2):203-226. 

[24] Roohani, N., Hurrell, R., Wegmueller, R., 2012. Zinc and phytic acid in major foods consumed by a rural and a suburban population in central Iran. J Food Compos Anal, 28(1):8-15. 

[25] Salunke, R., Neelam, K., Rawat, N., 2011. Bioavailability of iron from wheat aegilops derivatives selected for high grain iron and protein contents. J Agric Food Chem, 59(16):9048

[26] Takrattanasaran, N., Chanchareonsook, J., Johnson, P.G., 2013. Amelioration of zinc deficiency of corn in calcareous soils of Thailand: zinc sources and application methods. J Plant Nutr, 36(8):1275-1286. 

[27] Tiong, J., McDonald, G.K., Genc, Y., 2014. HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytol, 201(1):131-143. 

[28] Wei, Y.Y., Shohag, M.J.I., Yang, X.E., 2012. Biofortification and bioavailability of rice grain zinc as affected by different forms of foliar zinc fertilization. PLoS ONE, 7(9):e45428

[29] Wissuwa, M., Ismail, A., Graham, R., 2008. Rice grain zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization. Plant Soil, 306(1-2):37-48. 

[30] Wu, C.Y., Feng, Y., Shohag, M.J., 2011. Characterization of 68Zn uptake, translocation, and accumulation into developing grains and young leaves of high Zn-density rice genotype. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 12(5):408-418. 

[31] Xu, R.K., Zhao, A.Z., Li, Q.M., 2003. Acidity regime of the red soils in a subtropical region of southern China under field conditions. Geoderma, 115(1-2):75-84. 

[32] Yao, F., Huang, J., Cui, K., 2012. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crops Res, 126:16-22. 

[33] Yilmaz, A., Ekiz, H., Torun, B., 1997. Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-deficient calcareous soils. J Plant Nutr, 20(4-5):461-471. 

[34] Zhang, H., Xue, Y., Wang, Z., 2009. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci, 49(6):2246-2260. 

[35] Zhao, F.J., Mcgrath, S.P., 2009. Biofortification and phytoremediation. Curr Opin Plant Biol, 12(3):373-380. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE