Full Text:   <2772>

Summary:  <1947>

CLC number: R394-3

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-07-09

Cited: 1

Clicked: 4650

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jing Jiang

http://orcid.org/0000-0001-9203-9006

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2015 Vol.16 No.10 P.845-856

http://doi.org/10.1631/jzus.B1400319


Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit


Author(s):  Ning Zhang, Jing Jiang, Yan-li Yang, Zhi-he Wang

Affiliation(s):  Key Laboratory of Protected Horticulture, Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China

Corresponding email(s):   zhangningsyau@163.com, jj_syau@hotmail.com

Key Words:  Invertase inhibitor, Fruit development, Transient transformation system, Solanum lycopersicum, Overexpression


Ning Zhang, Jing Jiang, Yan-li Yang, Zhi-he Wang. Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit[J]. Journal of Zhejiang University Science B, 2015, 16(10): 845-856.

@article{title="Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit",
author="Ning Zhang, Jing Jiang, Yan-li Yang, Zhi-he Wang",
journal="Journal of Zhejiang University Science B",
volume="16",
number="10",
pages="845-856",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400319"
}

%0 Journal Article
%T Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit
%A Ning Zhang
%A Jing Jiang
%A Yan-li Yang
%A Zhi-he Wang
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 10
%P 845-856
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400319

TY - JOUR
T1 - Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit
A1 - Ning Zhang
A1 - Jing Jiang
A1 - Yan-li Yang
A1 - Zhi-he Wang
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 10
SP - 845
EP - 856
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400319


Abstract: 
In this study, we produced tomato plants overexpressing an invertase inhibitor gene (Sly-INH) from tomato, using a simple and efficient transient transformation system. Compared with control plants, the expression of Sly-INH was highly upregulated in Sly-INH overexpressing plants, as indicated by real-time polymerase chain reaction (PCR). Physiological analysis revealed that Sly-INH inhibited the activity of cell wall invertase (CWIN), which increased sugar accumulation in tomato fruit. Furthermore, Sly-INH mediated sucrose metabolism by regulating CWIN activity. Our results suggest that invertase activity is potentially regulated by the Sly-INH inhibitor at the post-translational level, and they demonstrate that the transient transformation system is an effective method for determining the functions of genes in tomato.

转化酶抑制子调控番茄果实糖代谢的功能分析

目的:研究转化酶抑制子基因对番茄果实糖转运与积累的影响,并初步探讨其调控机制。
创新点:首次在番茄果实瞬时表达系统中证明转化酶抑制子可明显抑制细胞壁转化酶活性,并且此抑制作用是通过翻译后水平发挥作用。
方法:将Micro-Tom番茄分为对照组(果实未注射农杆菌及注射不含载体的空白农杆菌)和实验组(果实注射含有过表达转化酶抑制子基因的农杆菌),番茄果实分为萼片、中果肉、胶质胎座和心室隔壁四个部位,用实时定量聚合酶链式反应(qRT-PCR)技术检测转化酶抑制子和转化酶基因家族的表达变化,利用比色法分别检测了蔗糖代谢关键酶活性的变化,用高效液相色谱检测果实各部位果糖、葡萄糖和蔗糖的含量,利用高氯酸水解法测定淀粉的含量。
结论:利用农杆菌注射进行果实瞬时表达后果实各部位的细胞壁转化酶活性受到明显抑制,但转化酶基因家族的转录水平表达变化不大,果糖和葡萄糖含量下降,蔗糖含量有所升高。这一结果表明Sly-INH基因主要是通过在翻译后水平对番茄细胞壁转化酶进行调控,进而影响番茄果实糖的组成与含量。本研究从分子水平对转化酶抑制子及其调控的转化酶基因家族进行了系统性研究,这为利用栽培手段调控植物体内转化酶的表达和活性,调节库组织的蔗糖的输入速率以及同化产物的分配以改善品质提供依据与技术支持。

关键词:转化酶抑制子;果实发育;瞬时表达体系;过表达;番茄

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bate, N.J., Niu, X.P., Wang, Y.W., et al., 2004. An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development. Plant Physiol., 134(1):246-254.

[2]Baxter, C., Carrari, F., Bauke, A., et al., 2005. Fruit carbohydrate metabolism in an introgression line of tomato with increased fruit soluble solids. Plant Cell Physiol., 46(3): 425-437.

[3]Biemelt, S., Sonnewald, U., 2006. Plant-microbe interactions to probe regulation of plant carbon metabolism. J. Plant Physiol., 163(3):307-318.

[4]Brummell, D.A., Chen, R.K., Harris, J.C., et al., 2011. Induction of vacuolar invertase inhibitor mRNA in potato tubers contributes to cold-induced sweetening resistance and includes spliced hybrid mRNA variants. J. Exp. Bot., 62(10):3519-3534.

[5]Chourey, P.S., Jain, M., Li, Q.B., et al., 2006. Genetic control of cell wall invertases in developing endosperm of maize. Planta, 223(2):159-167.

[6]Davies, J.N., Hobson, G.E., 1981. The constituents of the tomato fruit—the influence of environment, nutrition, and genotype. Crit. Rev. Food Sci. Nutr., 15(3):205-280.

[7]Fridman, E., Zamir, D., 2003. Functional divergence of a syntenic invertase gene family in tomato, potato, and Arabidopsis. Plant Physiol., 131(2):603-609.

[8]Fridman, E., Carrari, F., Liu, Y.S., et al., 2004. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science, 305(5691):1786-1789.

[9]Gibon, Y., Blaesing, O.E., Hannemann, J., et al., 2004. A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell, 16(12):3304-3325.

[10]Godt, D.E., Roitsch, T., 1997. Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in establishing and maintaining sink metabolism. Plant Physiol., 115(1):273-282.

[11]Greiner, S., Krausgrill, S., Rausch, T., 1998. Cloning of a tobacco apoplasmic invertase inhibitor. Proof of function of the recombinant protein and expression analysis during plant development. Plant Physiol., 116(2):733-774.

[12]Greiner, S., Rausch, T., Sonnewald, U., et al., 1999. Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers. Nat. Biotechnol., 17(7):708-711.

[13]Greiner, S., Koster, U., Lauer, K., et al., 2000. Plant invertase inhibitors: expression in cell culture and during plant development. Aust. J. Plant Physiol., 27(9):807-814.

[14]Hajirezaei, M.R., Takahata, Y., Trethewey, R.N., et al., 2000. Impact of elevated and apoplastic invertase activity on carbon metabolism during potato tuber development. J. Exp. Bot., 51(Suppl. 1):439-445.

[15]Hanson, J., Smeekens, S., 2009. Sugar perception and signaling— an update. Curr. Opin. Plant Biol., 12(5):562-567.

[16]Herbers, K., Meuwly, P., Frommer, W.B., et al., 1996. Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell, 8(5):793-803.

[17]Hothorn, M., Wolf, S., Aloy, P., et al., 2004. Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell, 16(12):3437-3447.

[18]Hothorn, M., Ende, W.V., Lammensc, W., et al., 2010. Structural insights into the pH-controlled targeting of plant cell wall invertase by a specific inhibitor protein. PNAS, 107(40):17427-17432.

[19]Huang, L.F., Bocock, P.N., Davis, J.M., et al., 2007. Regulation of invertase: a suite of transcriptional and post-transcriptional mechanisms. Funct. Plant Biol., 34(6):499-507.

[20]Janssen, B.J., Gardner, R.C., 1990. Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol. Biol., 14(1):61-72.

[21]Jin, Y., Ni, D.A., Ruan, Y.L., 2009. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell, 21(7):2072-2089.

[22]Kapila, J., Rycke, R.D., van Montagu, M., 1997. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci., 122(1):101-108.

[23]Klann, E.M., Hall, B., Bennett, A.B., 1996. Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in tomato fruit. Plant Physiol., 112(3):1321-1330.

[24]Klee, H.J., Giovannoni, J.J., 2011. Genetics and control of tomato fruit ripening and quality attributes. Annu. Rev. Genet., 45(1):41-59.

[25]Kusch, U., Harms, K., Rausch, T., et al., 2009. Inhibitors of plant invertases do not affect the structurally related enzymes of fructan metabolism. New Phytol., 181(3):601-612.

[26]le Roy, K., Vergauwen, R., Struyf, T., et al., 2013. Understanding the role of defective invertases in plants: tobacco Nin88 fails to degrade sucrose. Plant Physiol., 161(4):1670-1681.

[27]Link, M., Rausch, T., Greiner, S., 2004. In Arabidopsis thaliana, the invertase inhibitors AtC/VIF1 and 2 exhibit distinct target enzyme specificities and expression profiles. FEBS Lett., 573(1-3):105-109.

[28]McLaughlin, J.E., Boyer, J.S., 2004. Sugar-responsive gene expression, invertase activity, and senescence in aborting maize ovaries at low water potentials. Ann. Bot., 94(5):675-689.

[29]Orzaez, D., Sophie, M., Willemien, H., et al., 2006. Agroinjection of tomato fruits: a tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol., 140(l):3-11.

[30]Palmer, W.M., Ru, L., Jin, Y., et al., 2015. Tomato ovary-to-fruit transition is characterized by a developmental shift of cell wall invertase and its inhibitor mRNAs from a dispersed expression to a phloem-specific pattern with the encoded proteins localized to sieve elements. Mol. Plant, 8(2):315-328.

[31]Pressey, R., 1966. Separation and properties of potato invertase and invertase inhibitor. Arch. Biochem. Biophys., 113(3):667-674.

[32]Rausch, T., Greiner, S., 2004. Plant protein inhibitors of invertases. Biochim. Biophys. Acta, 1696(2):253-261.

[33]Reca, I.B., Brutus, A., D'Avino, R., et al., 2008. Molecular cloning, expression and characterization of a novel apoplastic invertase inhibitor from tomato (Solanum lycopersicum) and its use to purify a vacuolar invertase. Biochimie, 90(11-12):1611-1623.

[34]Roitsch, T., Balibrea, M.E., Hofmann, M., et al., 2003. Extracellular invertase: key metabolic enzyme and PR protein. J. Exp. Bot., 54(382):513-524.

[35]Schaarschmidt, S., Roitsch, T., Hause, B., 2006. Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots. J. Exp. Bot., 57(15):4015-4023.

[36]Scharte, J., Schon, H., Weis, E., 2005. Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant Cell Environ., 28(11):1421-1435.

[37]Schwimmer, S., Makower, R.U., Rorem, E.S., 1961. Invertase and invertase inhibitor in potato. Plant Physiol., 36(3):313-316.

[38]Sturm, A., 1999. Invertases: primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol., 121(1):1-8.

[39]Tauzin, A.S., Sulzenbacher, G., Lafond, M., et al., 2014. Functional characterization of a vacuolar invertase from Solanum lycopersicum: post-translational regulation by N-glycosylation and a proteinaceous inhibitor. Biochimie, 101:39-49.

[40]Tomlinson, K.L., McHugh, S., Labbe, H., et al., 2004. Evidence that the hexose-to-sucrose ratio does not control the switch to storage product accumulation in oilseeds: analysis of tobacco seed development and effects of overexpressing apoplastic invertase. J. Exp. Bot., 55(406):2291-2303.

[41]Weil, M., Krausgrill, S., Schuster, A., et al., 1994. A 17-kDa Nicotiana tabacum cell-wall peptide acts as an in-vitro inhibitor of the cell-wall isoform of acid invertase. Planta, 193(3):438-445.

[42]Wroblewski, T., Tomczak, A., Michelmore, R., 2005. Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato, and Arabidopsis. Plant Biotechnol. J., 3(2):259-273.

[43]Yelle, S., Chetelat, R.T., Dorais, M., et al., 1991. Sink metabolism in tomato fruit, genetic and biochemical analysis of sucrose accumulation. Plant Physiol., 95(4):1026-1035.

[44]Zanor, M.I., Osorio, S., Nunes-Nesi, A., et al., 2009. RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol., 150(3):1204-1218.

[45]Zrenner, R., Salanoubat, M., Willmitzer, L., et al., 1995. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J., 7(1):97-107.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE