Full Text:   <2894>

Summary:  <2305>

Suppl. Mater.: 

CLC number: S816.3

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-05-25

Cited: 7

Clicked: 5646

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei-fen Li

http://orcid.org/0000-0001-8159-9876

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2015 Vol.16 No.6 P.487-495

http://doi.org/10.1631/jzus.B1400342


Effect of dietary supplementation of Bacillus subtilis B10 on biochemical and molecular parameters in the serum and liver of high-fat diet-induced obese mice


Author(s):  Kai Lei, Ya-li Li, Yang Wang, Jing Wen, Hong-zhao Wu, Dong-you Yu, Wei-fen Li

Affiliation(s):  Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   wfli@zju.edu.cn

Key Words:  Bacillus subtilis, High-fat diet, Oxidative stress, Lipid metabolism


Kai Lei, Ya-li Li, Yang Wang, Jing Wen, Hong-zhao Wu, Dong-you Yu, Wei-fen Li. Effect of dietary supplementation of Bacillus subtilis B10 on biochemical and molecular parameters in the serum and liver of high-fat diet-induced obese mice[J]. Journal of Zhejiang University Science B, 2015, 16(6): 487-495.

@article{title="Effect of dietary supplementation of Bacillus subtilis B10 on biochemical and molecular parameters in the serum and liver of high-fat diet-induced obese mice",
author="Kai Lei, Ya-li Li, Yang Wang, Jing Wen, Hong-zhao Wu, Dong-you Yu, Wei-fen Li",
journal="Journal of Zhejiang University Science B",
volume="16",
number="6",
pages="487-495",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400342"
}

%0 Journal Article
%T Effect of dietary supplementation of Bacillus subtilis B10 on biochemical and molecular parameters in the serum and liver of high-fat diet-induced obese mice
%A Kai Lei
%A Ya-li Li
%A Yang Wang
%A Jing Wen
%A Hong-zhao Wu
%A Dong-you Yu
%A Wei-fen Li
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 6
%P 487-495
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400342

TY - JOUR
T1 - Effect of dietary supplementation of Bacillus subtilis B10 on biochemical and molecular parameters in the serum and liver of high-fat diet-induced obese mice
A1 - Kai Lei
A1 - Ya-li Li
A1 - Yang Wang
A1 - Jing Wen
A1 - Hong-zhao Wu
A1 - Dong-you Yu
A1 - Wei-fen Li
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 6
SP - 487
EP - 495
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400342


Abstract: 
While a high-fat diet (HFD) is assumed to be related to fat-mediated oxidative stress decreasing antioxidant enzyme activity, probiotics are believed to have positive effects on the regulation of HFD-induced obesity as well as lipid metabolism, energy homeostasis, and anti-oxidation. Because Bacillus subtilis B10 has beneficial effects on the abnormal lipid metabolism and the oxidative stress in HFD-induced obese mice, ICR mice were randomly assigned into an HFD group and the HFD was supplemented with 0.1% (w/w) Bacillus subtilis B10 (HFD+B10 group). Thereafter, 30-d treatments were run, and then hepatic lipid level and antioxidant status were measured. The expression of genes related to lipid metabolism and oxidative stress in the liver was determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). We found that HFD-induced obese mice treated with B10 showed a decrease in weight gain, serum glucose activity as well as hepatic triglyceride (TG), glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) activities. In addition, the gene expressions of antioxidant genes, glutathione reductase (GR), xanthine oxidase (XO), heat-shock protein 90 (Hsp90), and lipid synthesis gene 3β-hydroxysteroid-∆24 reductase (DHCR24) in the HFD+B10 group were down-regulated, suggesting alleviation of oxidative stress, while the lipolysis gene 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), energy metabolism gene peroxisome proliferator-activated receptor α (PPARα) and the gene encoding tumor-suppressor protein p53 were up-regulated. The regulatory and positive effect of dietary supplementation of probiotic B10 suggests that it has a beneficial effect on the homeostasis of the lipid metabolism and on alleviating oxidative stress in HFD-induced obese mice.

日粮中添加枯草芽孢杆菌B10对高脂日粮诱导的小鼠脂肪代谢及抗氧化的影响

目的:探究枯草芽孢杆菌B10对高脂日粮诱导的小鼠脂肪代谢及氧化应激的改善作用,并初步探讨其作用机制。
创新点:证明了枯草芽孢杆菌B10可以有效改善高脂日粮诱导的小鼠脂肪代谢和氧化应激,且发现此作用主要与B10调节脂肪代谢基因(PPARα、DHCR24、HMGCS2)及氧化应激基因(XO、p53)表达和谷胱甘肽过氧化物酶(GSH-Px)活力有关。
方法:将ICR雄鼠分为对照组(饲喂高脂日粮)和实验组(饲喂添加枯草芽孢杆菌菌粉的高脂日粮)。饲喂30天后,收集小鼠的血清及肝脏样品。采用试剂盒测定抗氧化及脂肪代谢相关指标和肝脏中8-羟基脱氧鸟苷(8-OHdG)含量。使用荧光定量聚合酶链式反应(PCR)测定小鼠肝脏中脂肪代谢和氧化应激相关基因的表达水平。
结论:饲喂含有枯草芽孢杆菌B10的高脂日粮能够有效降低小鼠的体重(表2),降低血清中葡萄糖和甘油三酯含量及谷草转氨酶和谷丙转氨酶活力(表3和4);下调肝脏中脂肪合成相关基因表达量,但上调脂肪分解相关基因表达量(图1),并提高肝脏中抗氧化相关基因表达量(图2)。综上所述,枯草芽孢杆菌B10能有效调节小鼠脂肪代谢,并改善其氧化应激。

关键词:枯草芽孢杆菌;高脂日粮;氧化应激;脂肪代谢

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]An, H.M., Park, S.Y., Lee, D.K., et al., 2011. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis., 10:116.

[2]An, R., Tian, C., Shi, Q., et al., 2008. Overexpression of nm23-H1 in HeLa cells provides cells with higher resistance to oxidative stress possibly due to raising intracellular p53 and GPX1. Acta Pharmacol. Sin., 29(12):1451-1458.

[3]Araya, M., Morelli, L., Reid, G., et al., 2002. Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. London Ontario, Canada.

[4]Ardan, T., Kovaceva, J., Cejkova, J., 2004. Comparative histochemical and immunohistochemical study on xanthine oxidoreductase/xanthine oxidase in mammalian corneal epithelium. Acta Histochem., 106(1):69-75.

[5]Charradi, K., Elkahoui, S., Limam, F., et al., 2013. High-fat diet induced an oxidative stress in white adipose tissue and disturbed plasma transition metals in rat: prevention by grape seed and skin extract. J. Physiol. Sci., 63(6):445-455.

[6]Chen, W., Jiang, T., Wang, H., et al., 2012. Does Nrf2 contribute to p53-mediated control of cell survival and death? Antioxid. Redox Signal., 17(12):1670-1675.

[7]de Souza-Pinto, N.C., Eide, L., Hogue, B.A., et al., 2001. Repair of 8-oxodeoxyguanosine lesions in mitochondrial DNA depends on the oxoguanine DNA glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial DNA of OGG1-defective mice. Cancer Res., 61(14):5378-5381.

[8]Eckel, R.H., Grundy, S.M., Zimmet, P.Z., 2005. The metabolic syndrome. Lancet, 365(9468):1415-1428.

[9]Endo, H., Niioka, M., Kobayashi, N., et al., 2013. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis. PLoS ONE, 8(5):e63388.

[10]Everard, A., Matamoros, S., Geurts, L., et al., 2014. Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. mBio, 5(3):e01011-e01014.

[11]Furukawa, S., Fujita, T., Shimabukuro, M., et al., 2004. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest., 114(12):1752-1761.

[12]Gao, D., Zhu, G., Gao, Z., et al., 2011. Antioxidative and hypolipidemic effects of lactic acid bacteria from pickled Chinese cabbage. J. Med. Plants Res., 5(8):1439-1446.

[13]Gorinstein, S., Leontowicz, H., Leontowicz, M., et al., 2006. Raw and boiled garlic enhances plasma antioxidant activity and improves plasma lipid metabolism in cholesterol-fed rats. Life Sci., 78(6):655-663.

[14]Hong, H.A., Duc, L.H., Cutting, S.M., 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev., 29(4):813-835.

[15]Hu, Y., Dun, Y., Li, S., et al., 2014. Effects of Bacillus subtilis KN-42 on growth performance, diarrhea and faecal bacterial flora of weaned piglets. Asian Australas. J. Anim. Sci., 27(8):1131-1140.

[16]Jeong, S.K., Nam, H.S., Rhee, J.A., et al., 2004. Metabolic syndrome and ALT: a community study in adult Koreans. Int. J. Obes., 28(8):1033-1038.

[17]Kamata, H., Hirata, H., 1999. Redox regulation of cellular signalling. Cell. Signal., 11(1):1-14.

[18]Kang, J.H., Yun, S.I., Park, M.H., et al., 2013. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS ONE, 8(1):e54617.

[19]Li, Y.L., Lei, K., Xu, X., et al., 2013. Protective effect of Bacillus subtilis B10 against hydrogen peroxide-induced oxidative stress in a murine macrophage cell line. Int. J. Agric. Biol., 15(5):927-932.

[20]Liu, D., Xu, Y., 2011. p53, oxidative stress, and aging. Antioxid. Redox Signal., 15(6):1669-1678.

[21]Marczuk-Krynicka, D., Hryniewiecki, T., Paluszak, J., et al., 2009. High fat content in diets and oxidative stress in livers of non-diabetic and diabetic rats. Polish J. Environ. Stud., 18(2):249-253.

[22]Matsuda, M., Shimomura, I., 2013. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes. Res. Clin. Pract., 7(5):e330-e341.

[23]Matsuzawa-Nagata, N., Takamura, T., Ando, H., et al., 2008. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism, 57(8):1071-1077.

[24]Newsholme, P., Krause, M., 2014. Diet, obesity, and reactive oxygen species—implications for diabetes and aging. In: Laher, I. (Ed.), Systems Biology of Free Radicals and Antioxidants. Springer Berlin Heidelberg, p.3361-3374.

[25]Nikoskelainen, S., Ouwehand, A.C., Bylund, G., et al., 2003. Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol., 15(5):443-452.

[26]Novak, R., Bogovič Matijašić, B., Terčič, D., et al., 2011. Effects of two probiotic additives containing Bacillus spores on carcass characteristics, blood lipids and cecal volatile fatty acids in meat type chickens. J. Anim. Physiol. Anim. Nutr. (Berl.), 95(4):424-433.

[27]Panda, A.K., Rao, S.V.R., Raju, M.V., et al., 2006. Dietary supplementation of Lactobacillus sporogenes on performance and serum biochemico—lipid profile of broiler chickens. J. Poult. Sci., 43(3):235-240.

[28]Park, D.Y., Ahn, Y.T., Park, S.H., et al., 2013. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS ONE, 8(3):e59470.

[29]Rafter, J., 2002. Lactic acid bacteria and cancer. Br. J. Nutr., 88(S1):S89-S94.

[30]Rizvi, F., Iftikhar, M., George, J.P., 2003. Beneficial effects of fish liver preparations of sea bass (Lates calcarifer) versus gemfibrozil in high fat diet-induced lipid-intolerant rats. J. Med. Food, 6(2):123-128.

[31]Sablina, A.A., Budanov, A.V., Ilyinskaya, G.V., et al., 2005. The antioxidant function of the p53 tumor suppressor. Nat. Med., 11(12):1306-1313.

[32]Sies, H., 1997. Oxidative stress: oxidants and antioxidants. Exp. Physiol., 82(2):291-295.

[33]Tsai, Y.T., Cheng, P.C., Pan, T.M., 2014. Anti-obesity effects of gut microbiota are associated with lactic acid bacteria. Appl. Microbiol. Biotechnol., 98(1):1-10.

[34]Valko, M., Rhodes, C.J., Moncol, J., et al., 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 160(1):1-40.

[35]Wang, J., Tang, H., Zhang, C., et al., 2015. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J., 9:1-15.

[36]Westerbacka, J., Corner, A., Tiikkainen, M., et al., 2004. Women and men have similar amounts of liver and intra-abdominal fat, despite more subcutaneous fat in women: implications for sex differences in markers of cardiovascular risk. Diabetologia, 47(8):1360-1369.

[37]Wu, R.M., Sun, Y.Y., Zhou, T.T., et al., 2014. Arctigenin enhances swimming endurance of sedentary rats partially by regulation of antioxidant pathways. Acta Pharmacol. Sin., 35(10):1274-1284.

[38]Xin, J., Zeng, D., Wang, H., et al., 2014. Preventing non-alcoholic fatty liver disease through Lactobacillus johnsonii BS15 by attenuating inflammation and mitochondrial injury and improving gut environment in obese mice. Appl. Microbiol. Biotechnol., 98(15):6817-6829.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE