Full Text:   <2488>

Summary:  <1887>

CLC number: S541

On-line Access: 2015-06-08

Received: 2014-11-30

Revision Accepted: 2015-05-04

Crosschecked: 2015-05-20

Cited: 2

Clicked: 4429

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xin-ping Liang

http://orcid.org/0000-0002-8886-8992

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2015 Vol.16 No.6 P.479-486

http://doi.org/10.1631/jzus.B1400343


Effects of alfalfa saponin extract on mRNA expression of Ldlr, LXRα, and FXR in BRL cells


Author(s):  Xin-ping Liang, Dong-qiang Zhang, Yan-yan Chen, Rui Guo, Jie Wang, Cheng-zhang Wang, Ying-hua Shi

Affiliation(s):  College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China

Corresponding email(s):   annysyh@126.com

Key Words:  Alfalfa saponin extract, Hyperlipidemic BRL cells, Cholesterol metabolism, mRNA expression


Xin-ping Liang, Dong-qiang Zhang, Yan-yan Chen, Rui Guo, Jie Wang, Cheng-zhang Wang, Ying-hua Shi. Effects of alfalfa saponin extract on mRNA expression of Ldlr, LXRα, and FXR in BRL cells[J]. Journal of Zhejiang University Science B, 2015, 16(6): 479-486.

@article{title="Effects of alfalfa saponin extract on mRNA expression of Ldlr, LXRα, and FXR in BRL cells",
author="Xin-ping Liang, Dong-qiang Zhang, Yan-yan Chen, Rui Guo, Jie Wang, Cheng-zhang Wang, Ying-hua Shi",
journal="Journal of Zhejiang University Science B",
volume="16",
number="6",
pages="479-486",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400343"
}

%0 Journal Article
%T Effects of alfalfa saponin extract on mRNA expression of Ldlr, LXRα, and FXR in BRL cells
%A Xin-ping Liang
%A Dong-qiang Zhang
%A Yan-yan Chen
%A Rui Guo
%A Jie Wang
%A Cheng-zhang Wang
%A Ying-hua Shi
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 6
%P 479-486
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400343

TY - JOUR
T1 - Effects of alfalfa saponin extract on mRNA expression of Ldlr, LXRα, and FXR in BRL cells
A1 - Xin-ping Liang
A1 - Dong-qiang Zhang
A1 - Yan-yan Chen
A1 - Rui Guo
A1 - Jie Wang
A1 - Cheng-zhang Wang
A1 - Ying-hua Shi
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 6
SP - 479
EP - 486
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400343


Abstract: 
We studied the effects of alfalfa saponin extract (ASE) on low density lipoprotein receptor (Ldlr), liver X receptor α (LXRα), and farnesoid X receptor (FXR) in normal and hyperlipidemic Buffalo rat liver (BRL) cells. Normal and hyperlipidemic BRL cells were divided into eight groups: normal, or normal cells treated with 50, 100, and 150 mg/L ASE, hyperlipidemic, or hyperlipidemic cells treated with 50, 100, and 150 mg/L ASE. After treatment for 24 h, Ldlr, LXRα, and FXR mRNA expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Data showed that mRNA expression of Ldlr in normal BRL cells was significantly up-regulated by ASE treatment and mRNA expressions of LXRα and FXR were significantly down-regulated both in normal and hyperlipidemic BRL cells after ASE treatment. Thus, ASE might ameliorate hepatic steatosis by regulating genes involved in cholesterol metabolism, including up-regulation of Ldlr as well as down-regulation of LXRα and FXR.

苜蓿皂苷提取物对BRL细胞Ldlr、LXRα和FXRmRNA表达的影响

目的:分析苜蓿皂苷提取物对正常和脂变Buffalo大鼠肝细胞(BRL细胞)中LdlrLXRαFXRmRNA表达的影响,进而初步探讨苜蓿皂苷调节脂质代谢及降低机体胆固醇含量的机制。
创新点:苜蓿皂苷具有调节脂质代谢,降低机体胆固醇含量的作用,但是目前对其机理研究并不多,特别是在细胞水平上。本试验以BRL细胞为对象,研究苜蓿皂苷对胆固醇代谢相关基因表达的影响,从而探究苜蓿皂苷在细胞水平上对胆固醇代谢的调节作用。
方法:通过50%胎牛血清诱导BRL细胞48h建立细胞脂肪变性模型,运用实时荧光定量聚合酶链式反应(qRT-PCR)检测正常和脂变BRL细胞LdlrLXRαFXRmRNA的表达,从而得出各处理组BRL细胞内LdlrLXRαFXRmRNA表达的变化。
结论:(1)添加苜蓿皂苷后,正常BRL细胞中LdlrmRNA的表达量显著上调,脂变BRL细胞LdlrmRNA的表达有增加的趋势;(2)苜蓿皂苷可以显著下调正常和脂变BRL细胞中LXRαFXRmRNA的表达。因此,在细胞水平上,苜蓿皂苷可能通过促进Ldlr的表达,抑制LXRαFXR的表达,从而调节BRL细胞胆固醇的代谢。

关键词:苜蓿皂苷提取物;脂变BRL细胞;胆固醇代谢;mRNA表达

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abidi, P., Chen, W., Kraemer, F.B., et al., 2006. The medicinal plant goldenseal is a natural LDL-lowering agent with multiple bioactive components and new action mechanisms. J. Lipid Res., 47(10):2134-2147.

[2]A-González, N., Castrillo, A., 2011. Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. BBA-Mol. Basis Dis., 1812(8):982-994.

[3]Al-Bar, A., Ismail, A., Cheeke, P.R., et al., 1993. Effect of dietary Yucca schidigera extract (deodorase) on environmental ammonia and growth performance of chickens and rabbits. Proc. West. Sec. Am. Soc. Anim. Sci., 44:106-108.

[4]Al-Naqeb, G., Ismail, M., Bagalkotkar, G., et al., 2010. Vanillin rich fraction regulates LDLR and HMGCR gene expression in HepG2 cells. Food Res. Int., 43(10):2437-2443.

[5]Bittner, V., 2003. Non-high-density lipoprotein cholesterol and cardiovascular disease. Curr. Opin. Lipidol., 14(4):367-371.

[6]Brown, M.S., Goldstein, J.L., 1983. Lipoprotein receptors in the liver. Control signals for plasma cholesterol traffic. J. Clin. Invest., 72(3):743-747.

[7]Brown, M.S., Goldstein, J.L., 1986. A receptor-mediated pathway for cholesterol homeostasis. Science, 232(4746):34-47.

[8]Cheng, S.B., Yang, Q.H., Zhang, Y.P., et al., 2010. Effects of panax notoginseng saponins on content of triglyceride and the mRNA expression of LXRα in steatotic hepatocyte LO2. Chin. J. Pathophysiol., 26(6):1151-1155 (in Chinese).

[9]Evangelho, J.S., Casali, K.R., Campos, C., et al., 2011. Hypercholesterolemia magnitude increases sympathetic modulation and coagulation in LDLr knockout mice. Auton. Neurosci., 159(1-2):98-103.

[10]Francis, G., Makkar, H.P., Becker, K., 2001. Effects of Quillaja saponins on growth, metabolism, egg production and muscle cholesterol in individually reared Nile tilapia (Oreochromis niloticus). Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 129(2):105-114.

[11]Geyeregger, R., Zeyda, M., Stulnig, T.M., 2006. Liver X receptors in cardiovascular and metabolic disease. Cell. Mol. Life Sci., 63(5):524-539.

[12]Goodwin, B., Jones, S.A., Price, R.R., et al., 2000. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell., 6(3):517-526.

[13]Ji, W., Gong, B.Q., 2007. Hypolipidemic effects and mechanisms of Panax notoginseng on lipid profile in hyperlipidemic rats. J. Ethnopharmacol., 113(2):318-324.

[14]Kathiresan, S., Manning, A.K., Demissie, S., et al., 2007. A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study. BMC Med. Genet., 8(Suppl. 1):S17.

[15]Kong, W., Wei, J., Abidi, P., et al., 2004. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat. Med., 10(12):1344-1351.

[16]Lambert, G., Amar, M.J., Guo, G., et al., 2003. The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J. Biol. Chem., 278(4):2563-2570.

[17]Li, Y.H., Yang, P., Kong, W.J., et al., 2009. Berberine analogues as a novel class of the low-density-lipoprotein receptor up-regulators: synthesis, structure-activity relationships, and cholesterol-lowering efficacy. J. Med. Chem., 52(2):492-501.

[18]Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods, 25(4):402-408.

[19]Lopez, A.D., Mathers, C.D., Ezzati, M., et al., 2006. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet, 367(9524):1747-1757.

[20]Luo, Q., Wen, X.Y., Lu, M., et al., 2009. Regulation of Zhenqing Recipe on expression of hepatic LXRα in type 2 diabetic rats complicated with non-alcoholic fatty liver disease. World Chin. J. Digestol., 17(14):1394-1401 (in Chinese).

[21]Makishima, M., Okamoto, A.Y., Repa, J.J., et al., 1999. Identification of a nuclear receptor for bile acids. Science, 284(5418):1362-1365.

[22]Malinow, M.R., Mclaughlin, P., Stafford, S., et al., 1980. Alfalfa saponins and alfalfa seeds. Dietary effects in cholesterol-fed rabbits. Atherosclerosis, 37(3):433-438.

[23]Mallnow, M.R., Mclaughlin, P., Kohler, G.O., et al., 1977. Prevention of elevated cholesterolemia in monkeys by alfalfa saponins. Steroids, 29(1):105-110.

[24]Mbikay, M., Sirois, F., Simoes, S., et al., 2014. Quercetin-3-glucoside increases low-density lipoprotein receptor (LDLR) expression, attenuates proprotein convertase subtilisin/kexin 9 (PCSK9) secretion, and stimulates LDL uptake by Huh7 human hepatocytes in culture. FEBS Open Bio, 4:755-762.

[25]Mukherjee, S., Mani, S., 2010. Orphan nuclear receptors as targets for drug development. Pharm. Res., 27(8):1439-1468.

[26]Pineda Torra, I., Claudel, T., Duval, C., et al., 2003. Bile acids induce the expression of the human peroxisome proliferator-activated receptor α gene via activation of the farnesoid X receptor. Mol. Endocrinol., 17(2):259-272.

[27]Pischon, T., Girman, C.J., Sacks, F.M., et al., 2005. Non-high-density lipoprotein cholesterol and apolipoprotein B in the prediction of coronary heart disease in men. Circulation, 112(22):3375-3383.

[28]Ramírez-Zacarías, J.L., Castro-Muñozledo, F., Kuri-Harcuch, W., 1992. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry, 97(6):493-497.

[29]Reena, M.B., Gowda, L.R., Lokesh, B.R., 2011. Enhanced hypocholesterolemic effects of interesterified oils are mediated by upregulating LDL receptor and cholesterol 7-α-hydroxylase gene expression in rats. J. Nutr., 141(1):24-30.

[30]Repa, J.J., Liang, G., Ou, J., et al., 2000. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev., 14(22):2819-2830.

[31]Rudling, M., 1992. Hepatic mRNA levels for the LDL receptor and HMG-CoA reductase show coordinate regulation in vivo. J. Lipid Res., 33(4):493-501.

[32]Santoso, B., Mwenya, B., Sar, C., et al., 2004. Effects of supplementing galacto-oligosaccharides, Yucca schidigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep. Livest. Prod. Sci., 91(3):209-217.

[33]Sen, S., Makkar, H.P., Becker, K., 1998. Alfalfa saponins and their implication in animal nutrition. J. Agric. Food Chem., 46(1):131-140.

[34]Shi, Y.H., Guo, R., Wang, X.K., et al., 2014. The regulation of alfalfa saponin extract on key genes involved in hepatic cholesterol metabolism in hyperlipidemic rats. PLoS ONE, 9(2):e88282.

[35]Stockert, J.C., Blázquez-Castro, A., Cañete, M., et al., 2012. MTT assay for cell viability: intracellular localization of the formazan product is in lipid droplets. Acta Histochem., 114(8):785-796.

[36]Tu, H., Okamoto, A.Y., Shan, B., 2000. FXR, a bile acid receptor and biological sensor. Trends Cardiovasc. Med., 10(1):30-35.

[37]Wang, J.M., Wang, D., Tan, Y.Y., et al., 2014. 22(R) - hydroxycholesterol and pioglitazone synergistically decrease cholesterol ester via the PPARγ-LXRα-ABCA1 pathway in cholesterosis of the gallbladder. Biochem. Biophys. Res. Commun., 447(1):152-157.

[38]Wang, Y.H., 2007. Effects of alfalfa saponins and alfalfa meal on the production performance and regulation mechanism of weaned piglets and finishing pigs. MS Thesis, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China (in Chinese).

[39]Zhou, L., Shi, Y.H., Guo, R., et al., 2014. Digital gene- expression profiling analysis of the cholesterol-lowering effects of alfalfa saponin extract on laying hens. PLoS ONE, 9(6):e98578.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE