Full Text:   <2813>

Summary:  <1502>

CLC number: Q819

On-line Access: 2017-04-05

Received: 2016-03-16

Revision Accepted: 2016-07-10

Crosschecked: 2017-03-17

Cited: 1

Clicked: 4014

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Bo Yuan

http://orcid.org/0000-0001-9880-4864

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.4 P.303-315

http://doi.org/10.1631/jzus.B1600118


Rapid prototyping technology and its application in bone tissue engineering


Author(s):  Bo Yuan, Sheng-yuan Zhou, Xiong-sheng Chen

Affiliation(s):  Department of Orthopedic Surgery, Shanghai Changzheng Hospital, the Second Military Medical University, Shanghai 200003, China

Corresponding email(s):   chenxiongsheng@vip.sohu.com

Key Words:  Rapid prototyping, Bone tissue engineering, Scaffolds


Bo Yuan, Sheng-yuan Zhou, Xiong-sheng Chen. Rapid prototyping technology and its application in bone tissue engineering[J]. Journal of Zhejiang University Science B, 2017, 18(4): 303-315.

@article{title="Rapid prototyping technology and its application in bone tissue engineering",
author="Bo Yuan, Sheng-yuan Zhou, Xiong-sheng Chen",
journal="Journal of Zhejiang University Science B",
volume="18",
number="4",
pages="303-315",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600118"
}

%0 Journal Article
%T Rapid prototyping technology and its application in bone tissue engineering
%A Bo Yuan
%A Sheng-yuan Zhou
%A Xiong-sheng Chen
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 4
%P 303-315
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600118

TY - JOUR
T1 - Rapid prototyping technology and its application in bone tissue engineering
A1 - Bo Yuan
A1 - Sheng-yuan Zhou
A1 - Xiong-sheng Chen
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 4
SP - 303
EP - 315
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600118


Abstract: 
Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects.

快速成型技术及其在骨组织工程中的应用

概要:骨缺损的修复是临床工作中亟待解决的难题,寻求完善的骨移植替代物一直是各国学者的研究焦点所在。近年来快速成型技术在骨组织工程领域内的应用逐渐扩大,个体化定制的优势为骨缺损修复提供了新思路。本文对快速成型技术在骨组织工程中的研究进展进行综述,概述了不同快速成型技术的原理和特点,总结其在骨组织工程中的应用现状和发展趋势。
关键词:快速成型技术;骨组织工程;支架

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Arcaute, K., Mann, B., Wicker, R., 2010. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater., 6(3):1047-1054.

[2]Bose, S., Roy, M., Bandyopadhyay, A., 2012. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol., 30(10):546-554.

[3]Bose, S., Vahabzadeh, S., Bandyopadhyay, A., 2013. Bone tissue engineering using 3D printing. Mater. Today, 16(12):496-504.

[4]Brie, J., Chartier, T., Chaput, C., et al., 2013. A new custom made bioceramic implant for the repair of large and complex craniofacial bone defects. J. Cranio Maxill. Surg., 41(5):403-407.

[5]Calori, G.M., Mazza, E., Colombo, M., et al., 2011. The use of bone-graft substitutes in large bone defects: any specific needs? Injury, 42(Suppl. 2):S56-S63.

[6]Campana, V., Milano, G., Pagano, E., et al., 2014. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J. Mater. Sci. Mater. Med., 25(10): 2445-2461.

[7]Chan, V., Zorlutuna, P., Jeong, J.H., et al., 2010. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip, 10(16):2062-2070.

[8]Chia, H.N., Wu, B.M., 2015. Recent advances in 3D printing of biomaterials. J. Biol. Eng., 9(1):1-14.

[9]Chuenjitkuntaworn, B., Inrung, W., Damrongsri, D., et al., 2010. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. J. Biomed. Mater. Res., 94A(1):241-251.

[10]de Santis, R., Gloria, A., Russo, T., et al., 2011. A basic approach toward the development of nanocomposite magnetic scaffolds for advanced bone tissue engineering. J. Appl. Polym. Sci., 122(6):3599-3605.

[11]de Santis, R., Amora, U., Russo, T., et al., 2015a. 3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds. J. Mater. Sci. Mater. Med., 26:250.

[12]de Santis, R., Russo, A., Gloria, A., et al., 2015b. Towards the design of 3D fiber-deposited poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite magnetic scaffolds for bone regeneration. J. Biomed. Nanotechnol., 11(7): 1236-1246.

[13]Dorj, B., Won, J.E., Kim, J.H., et al., 2013. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction. J. Biomed. Mater. Res. A, 101A(6):1670-1681.

[14]Du, D., Asaoka, T., Ushida, T., et al., 2014. Fabrication and perfusion culture of anatomically shaped artificial bone using sterolithography. Biofabrication, 6(4):045002.

[15]Duan, B., Wang, M., 2010. Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J. R. Soc. Interface, 5(Suppl. 5):S615-S629.

[16]Duan, B., Wang, M., Zhou, W.Y., et al., 2010. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater., 6(12):4495-4505.

[17]Duan, B., Cheung, W.L., Wang, M., 2011. Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Biofabrication, 3(1):015001.

[18]Eosoly, S., Brabazon, D., Lohfeld, S., et al., 2010. Selective laser sintering of hydroxyapatite/poly-epsilon-caprolactone scaffolds. Acta Biomater., 6(7):2511-2517.

[19]Feng, P., Wei, P., Shuai, C., et al., 2014. Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering. PLoS ONE, 9(1):e87755.

[20]Frame, M., Huntley, J.S., 2012. Rapid prototyping in orthopaedic surgery: a user’s guide. Sci. World J., 2012:1-7.

[21]Giannoudis, P.V., Chris Arts, J.J., Schmidmaier, G., et al., 2011. What should be the characteristics of the ideal bone graft substitute? Injury, 42(Suppl. 2):S1-S2.

[22]Greulich, M., Greul, M., Pintat, T., 1995. Fast, functional prototypes via multiphase jet solidification. Rapid Prototyping J., 1(1):20-25.

[23]Hernigou, P., 2014. Bone transplantation and tissue engineering, part I. Mythology, miracles and fantasy: from Chimera to the Miracle of the Black Leg of Saints Cosmas and Damian and the cock of John Hunter. Int. Orthop., 38(12):2631-2638.

[24]Houmard, M., Fu, Q., Genet, M., et al., 2013. On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds. J. Biomed. Mater. Res. B Appl. Biomater., 101(7):1233-1242.

[25]Huang, J., Lin, Y.W., Fu, X.W., et al., 2007. Development of nano-sized hydroxyapatite reinforced composites for tissue engineering scaffolds. J. Mater. Sci. Mater. Med., 18(11):2151-2157.

[26]Hutmacher, D.W., 2001. Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J. Biomater. Sci. Polym. Ed., 12(1): 107-124.

[27]Idaszek, J., Bruinink, A., Swieszkowski, W., 2015. Ternary composite scaffolds with tailorable degradation rate and highly improved colonization by human bone marrow stromal cells. J. Biomed. Mater. Res. A, 103(7):2394-2404.

[28]Inzana, J.A., Olvera, D., Fuller, S.M., et al., 2014. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials, 35(13):4026-4034.

[29]Jensen, J., Rolfing, J.H., Le, D.Q., et al., 2014. Surface-modified functionalized polycaprolactone scaffolds for bone repair: in vitro and in vivo experiments. J. Biomed. Mater. Res. A, 102(9):2993-3003.

[30]Kim, J., McBride, S., Tellis, B., et al., 2012. Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model. Biofabrication, 4(2):025003.

[31]Kim, J.Y., Cho, D., 2009. Blended PCL/PLGA scaffold fabrication using multi-head deposition system. Microelectron. Eng., 86(4-6):1447-1450.

[32]Kim, J.Y., Lee, T., Cho, D., et al., 2010. Solid free-form fabrication-based PCL/HA scaffolds fabricated with a multi-head deposition system for bone tissue engineering. J. Biomat. Sci. Polym. Ed., 21(6-7):951-962.

[33]Kim, T.H., Yun, Y.P., Park, Y.E., et al., 2014. In vitro and in vivo evaluation of bone formation using solid freeform fabrication-based bone morphogenic protein-2 releasing PCL/PLGA scaffolds. Biomed. Mater., 9(2):025008.

[34]Korpela, J., Kokkari, A., Korhonen, H., et al., 2013. Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling. J. Biomed. Mater. Res. B Appl. Biomater., 101B(4):610-619.

[35]Landers, R., Mülhaupt, R., 2000. Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol. Mater. Eng., 282(1):17-21.

[36]Lee, J.W., Kim, J.Y., Cho, D.W., 2010. Solid free-form fabrication technology and its application to bone tissue engineering. Int. J. Stem. Cells, 3(2):85-95.

[37]Lee, J.W., Kang, K.S., Lee, S.H., et al., 2011. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials, 32(3):744-752.

[38]Lee, J.Y., Choi, B., Wu, B., et al., 2013. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication, 5(4):045003.

[39]Li, J.P., Habibovic, P., van den Doel, M., et al., 2007a. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials, 28(18):2810-2820.

[40]Li, J.P., Habibovic, P., Yuan, H., et al., 2007b. Biological performance in goats of a porous titanium alloy-biphasic calcium phosphate composite. Biomaterials, 28(29): 4209-4218.

[41]Li, Y., Wu, Z., Li, X., et al., 2014. A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model. Biomaterials, 35(22):5647-5659.

[42]Lin, H., Zhang, D., Alexander, P.G., et al., 2013. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials, 34(2):331-339.

[43]Liu, H., Webster, T.J., 2011. Enhanced biological and mechanical properties of well-dispersed nanophase ceramics in polymer composites: from 2D to 3D printed structures. Mater. Sci. Eng. C, 31(2):77-89.

[44]Lu, L., Zhang, Q., Wootton, D., et al., 2012. Biocompatibility and biodegradation studies of PCL/β-TCP bone tissue scaffold fabricated by structural porogen method. J. Mater. Sci. Mater. Med., 23(9):2217-2226.

[45]Ma, P.X., Zhang, R., Xiao, G., et al., 2001. Engineering new bone tissue in vitro on highly porous poly(α-hydroxyl acids)/hydroxyapatite composite scaffolds. J. Biomed. Mater. Res., 54(2):284-293.

[46]Melchels, F.P.W., Feijen, J., Grijpma, D.W., 2010. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24):6121-6130.

[47]Melchels, F.P.W., Domingos, M.A.N., Klein, T.J., et al., 2012. Additive manufacturing of tissues and organs. Prog. Polym. Sci., 37(8):1079-1104.

[48]Mithal, A., Dhingra, V., Lau, E., et al., 2009. The Asian Audit Epidemiology, Costs and Burden of Osteoporosis in Asia. International Osteoporosis Foundation, Switzerland.

[49]Montjovent, M.O., Mathieu, L., Hinz, B., et al., 2005. Biocompatibility of bioresorbable poly(L-lactic acid) composite scaffolds obtained by supercritical gas foaming with human fetal bone cells. Tissue Eng., 11(11-12): 1640-1649.

[50]Montjovent, M.O., Mathieu, L., Schmoekel, H., et al., 2007. Repair of critical size defects in the rat cranium using ceramic-reinforced PLA scaffolds obtained by supercritical gas foaming. J. Biomed. Mater. Res. A, 83A(1):41-51.

[51]Narayan, R., 2014. Rapid prototyping of biomaterials: principles and applications. In: Chua, C.K., Leong, K.F., An, J. (Eds.), Introduction to Rapid Prototyping of Biomaterials. Woodhead Publishing, London, p.1-5.

[52]Orthoworld, Inc., 2011. Orthopaedic Industry Annual Report, 2011.

[53]Orthoworld, Inc., 2014. Orthopaedic Industry Annual Report, 2014.

[54]Oryan, A., Alidadi, S., Moshiri, A., et al., 2014. Bone regenerative medicine: classic options, novel strategies, and future directions. J. Orthop. Surg. Res., 9(1):18.

[55]Owen, R., Sherborne, C., Paterson, T., et al., 2016. Emulsion templated scaffolds with tunable mechanical properties for bone tissue engineering. J. Mech. Behav. Biomed. Mater., 54:159-172.

[56]Polo-Corrales, L., Latorre-Esteves, M., Ramirez-Vick, J.E., 2014. Scaffold design for bone regeneration. J. Nanosci. Nanotechnol., 14(1):15-56.

[57]Qian, C., Zhang, F., Sun, J., 2015. Fabrication of Ti/HA composite and functionally graded implant by three-dimensional printing. Bio-Med. Mater. Eng., 25(2):127-136.

[58]Ratner, B.D., Hoffman, A.S., Schoen, F.J., et al., 2004. Biomaterials Science: An Introduction to Materials in Medicine. Elsevier Academic Press, San Diego.

[59]Ronca, A., Ambrosio, L., Grijpma, D.W., 2012. Design of porous three-dimensional PDLLA/nano-HAP composite scaffolds using stereolithography. J. Appl. Biomater. Funct. Mater., 10(3):249-258.

[60]Roskies, M., Jordan, J.O., Fang, D., et al., 2016. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells. J. Biomater. Appl., 31(1):132-139.

[61]Sachlos, E., Czernuszka, J.T., 2003. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cell. Mater., 5:29-40.

[62]Saiz, E., Zimmermann, E.A., Lee, J.S., et al., 2013. Perspectives on the role of nanotechnology in bone tissue engineering. Dental Mater., 29(1):103-115.

[63]Schuurman, W., Khristov, V., Pot, M.W., et al., 2011. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication, 3(2):021001.

[64]Seitz, H., Rieder, W., Irsen, S., et al., 2005. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater., 74B(2):782-788.

[65]Shor, L., Guceri, S., Wen, X., et al., 2007. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials, 28(35):5291-5297.

[66]Shor, L., Guceri, S., Chang, R., et al., 2009. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication, 1(1):015003.

[67]Simpson, R.L., Wiria, F.E., Amis, A.A., et al., 2008. Development of a 95/5 poly(L-lactide-co-glycolide)/hydroxylapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J. Biomed. Mater. Res. B Appl. Biomater., 84B(1):17-25.

[68]Sultana, N., Wang, M., 2008. Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/ freeze-drying process and characterisation of the scaffolds. J. Mater. Sci. Mater. Med., 19(7):2555-2561.

[69]Sultana, N., Wang, M., 2012. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Biofabrication, 4(1):015003.

[70]Tabata, Y., 2009. Biomaterial technology for tissue engineering applications. J. R. Soc. Interface, 6(Suppl. 3):S311-S324.

[71]Tan, K.H., Chua, C.K., Leong, K.F., et al., 2005. Selective laser sintering of biocompatible polymers for applications in tissue engineering. Bio-Med. Mater. Eng., 15(1-2): 113-124.

[72]Tarafder, S., Bose, S., 2014. Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis. ACS Appl. Mater. Interfaces, 6(13):9955-9965.

[73]Tarafder, S., Davies, N.M., Bandyopadhyay, A., et al., 2013. 3D printed tricalcium phosphate scaffolds: effect of SrO and MgO doping on osteogenesis in a rat distal femoral defect model. Biomater. Sci., 1(12):1250-1259.

[74]Thadavirul, N., Pavasant, P., Supaphol, P., 2014. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration. J. Biomater. Sci. Polym. Ed., 25(17):1986-2008.

[75]Wang, C., Meng, G., Zhang, L., et al., 2012. Physical properties and biocompatibility of a core-sheath structure composite scaffold for bone tissue engineering in vitro. J. Biomed. Biotechnol., 2012:579141.

[76]Wang, F., Shor, L., Darling, A., et al., 2004. Precision extruding deposition and characterization of cellular poly-epsiloncaprolactone tissue scaffolds. Rapid Prototyping J., 10(1):42-49.

[77]Williams, J.M., Adewunmi, A., Schek, R.M., et al., 2005. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials, 26(23):4817-4827.

[78]Wiria, F.E., Leong, K.F., Chua, C.K., et al., 2007. Poly- epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater., 3(1):1-12.

[79]Wiria, F.E., Chua, C.K., Leong, K.F., et al., 2008. Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering. J. Mater. Sci. Mater. Med., 19(3):989-996.

[80]Wohlers Associates, Inc., 2015. Wohlers Reports 2015.

[81]Woodfield, T.B., Malda, J., de Wijn, J., et al., 2004. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials, 25(18):4149-4161.

[82]Xia, Y., Zhou, P., Cheng, X., et al., 2013. Selective laser sintering fabrication of nano-hydroxyapatite/poly-epsilon-caprolactone scaffolds for bone tissue engineering applications. Int. J. Nanomed., 8:4197-4213.

[83]Xiong, Z., Yan, Y.N., Zhang, R.J., et al., 2001. Fabrication of porous poly(L-lactic acid) scaffolds for bone tissue engineering via precise extrusion. Scripta Mater., 45(7): 773-779.

[84]Xiong, Z., Yan, Y., Wang, S., et al., 2002. Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scripta Mater., 46(11):771-776.

[85]Xu, M., Li, Y., Suo, H., et al., 2010. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Biofabrication, 2(2):025002.

[86]Xu, N., Ye, X., Wei, D., et al., 2014. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. ACS Appl. Mater. Interfaces, 6(17):14952-14963.

[87]Ye, L., Zeng, X., Li, H., et al., 2010. Fabrication and biocompatibility of nano non-stoichiometric apatite and poly (epsilon-caprolactone) composite scaffold by using prototyping controlled process. J. Mater. Sci. Mater. Med., 21(2):753-760.

[88]Yen, H., Tseng, C., Hsu, S., et al., 2009. Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen. Biomed. Microdev., 11(3):615-624.

[89]Zein, I., Hutmacher, D.W., Tan, K.C., et al., 2002. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 23(4): 1169-1185.

[90]Zhou, W.Y., Lee, S.H., Wang, M., et al., 2008. Selective laser sintering of porous tissue engineering scaffolds from poly (L-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J. Mater. Sci. Mater. Med., 19(7):2535-2540.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE